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Introduction

Ce cours se veut être un manuel de référence que vous devrez avoir systémati-
quement et obligatoirement sur vous lors de toutes les séances d’apprentissage
et d’évaluation. Vous irez y piocher les informations dont vous aurez besoin pour
résoudre les problèmes auxquels vous serez confrontés. Contrairement à un cours
habituel, ne vous attendez pas à une présentation systématique du contenu de ce li-
vret lors des séances de cours. L’ensemble des notions expliquées ici devront être
progressivement mises en œuvre lors de la résolution de chaque problème.

Ce livret n’est pas exhaustif. N’hésitez pas à consulter les documents listés dans
la section bibliographique si vous avez besoin de plus d’informations.

Programme
Ce cours correspond au module Introduction à la recherche opérationnelle et aide

à la décision (M4202C) du Programme Pédagogique National du DUT Informatique
[3]. L’objectif est de vous former aux compétences suivantes :

Objectif du module :
• Connaitre l’existence d’outils de base pour aider la décision : programmation

linéaire, etc. ;

• Comprendre le fonctionnement et les limitations de ces méthodes.

Compétences visées :
• Modéliser une situation complexe à l’aide d’un graphe ou de variables corré-

lées ;

• Prendre une décision raisonnée en optimisant un ou plusieurs critères.
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Contenus :
• Programmation linéaire ;

• optimisation discrète ;

• méthodes arborescentes.

Modalités de mise en œuvre :
Pour la mise en œuvre pratique de ce module, nous nous appuierons sur le lan-

gage MiniZinc, qui inclut un solveur de problèmes de satisfaction et optimisation de
contraintes simple.

Organisation des séances
La formation est organisée sous forme de problèmes sur lesquels vous travaillerez

lors des séances de TD et TP. L’ensemble des sujets des problèmes que vous aurez
à résoudre au cours de la formation se trouve en annexe de ce document. Générale-
ment, la résolution d’un problème suivra le schéma suivant :

1. Séance de TD (1 heure 30) : étude du sujet en groupe de 3 ou 4. Préparation
d’une solution.

2. Séance de TP (3 heures) : réalisation individuelle de la solution élaborée lors
de la séance de groupe.

3. Séance de TD (1 heure 30) :

• présentation du travail réalisé par un groupe,
• correction du problème,
• exercices d’application complémentaires.

4. Séance de cours (1 heure 30) :

• restructuration et réponse aux questions ;
• éventuellement une évaluation individuelle.

Soit 7 heures 30 en séance par problème. Entre chaque séance : travail auto-
nome (non encadré), individuel et/ou en groupe, pour compléter les préparations et
travaux non terminés (les évaluations sont faites en considérant que les problèmes
sont entièrement résolus) et acquérir les connaissances nécessaires à la résolution
des problèmes (normalement d’après ce livret).

L’annexeA de ce livret donne des indications sur lesméthodes de travail. Consultez-
la avant le début du premier problème.
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Chapitre 1
Optimisation combinatoire et
recherche opérationnelle :
comment, pourquoi ?

De nombreux problèmes, industriels ou quotidiens, nécessitent de réaliser des
décisions difficiles ou d’optimiser : réaliser un emploi du temps, ordonnancement
des tâches dans un atelier (scheduling), trouver le plus court chemin d’un point à un
autre (planning), stocker des objets dans des containers (bin packing), allocation de
fréquences pour les réseaux mobiles, routage dans les réseaux, dans les aéroports,
réaliser des intelligences artificielles, décrypter un message codé, etc…

En général, tous ces problèmes peuvent être décomposés en variables, souvent
des nombres entiers. Un problème de décision consiste à trouver une solution, c’est-
à-dire à affecter une valeur à chaque variable. Un problème d’optimisation consiste
à trouver la meilleure solution, suivant un critère donné, par exemple la solution la
moins couteuse, la moins risquée, prenant le moins de temps, etc., voire une combi-
naison de critères.

La recherche opérationnelle (et dans une certaine mesure l’intelligence artificielle)
est le domaine scientifique qui s’intéresse à ce genre de problème. Les problèmes
d’optimisation sont étudiés par les mathématiciens dès le XVIIIᵉ siècle, mais c’est
au cours de la seconde guerre mondiale qu’elle trouve de premières applications
concrètes dans la planification des opérations militaires (d’où son nom). À partir des
années 1950, la discipline commence à s’imposer dans les milieux industriels et aca-
démiques, mais c’est surtout dans les années 1990 que la performance des ordinateurs
permet de résoudre des problèmes industriels de taille raisonnable. Aujourd’hui, la
recherche opérationnelle et l’intelligence artificielle sont des disciplines académiques
très complètes, faisant intervenir des notions de mathématiques appliquées, d’infor-
matique, d’économie, d’ingéniérie, de statistiques, etc.
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2 CHAPITRE 1. OPTIMISATION ET RO

1.1 Quelques exemples
1.1.1 Appariements de colocataires

On souhaite apparier quatre personnes A, B, C et D pour une colocation (dans
deux appartements de deux places chacun). Chacune des quatre personnes a des af-
finités, pas toujours réciproques, avec chacune des trois autres. Ces affinités seront
représentées par une note allant de 0 (aucune affinité) à 10 (très forte affinité). L’ob-
jectif est de trouver un appariement qui va maximiser la somme des affinités.

Voici les affinités sous forme de matrice :

A B C D
A 0 6 10
B 3 7 2
C 3 9 4
D 7 8 4

Une solution à ce problème serait d’apparier A avec B et C avec D. La somme des
affinités est alors de 0 (affinité de A avec B) +3 (affinité de B avec A) +4+ 4 = 11.
Est-ce la meilleure solution?

On peut aussi fixer une affinité minimum, et trouver un appariement qui va satis-
faire ce minimum. On peut alors chercher à trouver le plus grand minimum possible.
La solution précédente a pour minimum l’affinité de A avec B, soit 0. Peut-on trouver
une solution avec un meilleur minimum?

Ce genre de problème est appelé un problème combinatoire parce que l’on est ten-
té, pour le résoudre, de tester toutes les combinaisons d’appariements jusqu’à trouver
la meilleure solution. Et le nombre de combinaisons augmente très vite ! Dans les an-
nées 1960, une université américaine souhaitait résoudre ce problème pour plus de
21 000 étudiants. Avec 22 personnes, il y a déjà plusieurs milliards de combinaisons
à évaluer. Une telle progression, dite exponentielle, dépasse de loin les capacités de
calcul des ordinateurs les plus puissants : les temps de calculs se compteraient en mil-
lénaires… Cependant, il n’est peut-être pas nécessaire de tester toutes les solutions
pour répondre au problème…

1.1.2 Coloration de carte
Un problème très classique en optimisation combinatoire est la coloration de

cartes.
Le principe consiste, comme dans l’exemple ci-dessus, à affecter une couleur à

chaque région d’une carte, de sorte que deux régions adjacentes aient deux couleurs
différentes. Il faut également trouver le nombre minimal de couleurs nécessaire pour
optimiser la solution.

Pour résoudre ce problème, on représente la carte par un graphe, dont la parti-
cularité est de pouvoir être tracé sans croiser les arcs : on parle de graphe planaire.
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Fig. 1.1 : Carte de France à colorier : combien de couleurs au minimum?

Dans ce cas, on a démontré en 1976 qu’on pouvait toujours colorer une carte avec
quatre couleurs seulement, mais la démonstration a résisté longtemps à la commu-
nauté des mathématiciens, depuis sa formulation au milieu du XIXᵉ siècle jusqu’à sa
preuve. Pour l’anecdote, c’est la première preuve qui avait nécessité l’emploi d’un
algorithme programmé, dans la mesure où la démonstration requiérait une décom-
position en 1 478 cas particuliers (on a trouvé de meilleures preuves depuis).

1.1.3 Problème du voyageur de commerce

Un voyageur de commerce doit visiter n villes en passant par chaque ville exac-
tement une fois. Il commence par une ville quelconque et finit sa tournée à la ville
de départ. Sachant que les distances entre les villes sont connues, quel chemin faut-
il choisir afin de minimiser la distance parcourue? La notion de distance peut-être
remplacée par d’autres notions comme le temps qu’il met ou l’argent qu’il dépense.
En termes mathématiques, l’objectif est de trouver un cycle hamiltonien (c’est-à-dire
passant par chaque sommet) de coût minimal.

Ce problème est un représentant de la classe des problèmes NP-complets. L’exis-
tence d’un algorithme de complexité polynomiale reste inconnue. Pour 15 villes, il
existe 43 milliards de possibilités. Temps de résolution : 12 h ! Les algorithmes pour
résoudre ce type de problèmes peuvent être répartis en deux classes :

1. Les algorithmes déterministes qui trouvent la solution optimale.

2. Les algorithmes d’approximation qui fournissent une solution presque opti-
male.
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1.2 Problème de satisfaisabilité
Étant donné un ensemble de règles logiques (c’est-à-dire une grosse formule boo-

léenne pouvant comporter les opérateurs NON, ET et OU), ce problème consiste à dé-
cider s’il existe une assignation de valeurs aux variables qui renvoie la valeur VRAI.
Il est toujours possible de réécrire ces problèmes sous forme d’une conjonction de
disjonctions (appelées clauses). Cette réécriture permet de considérer chaque clause
comme une contrainte au problème. Souvent, une telle assignation n’existe pas. Dans
ce cas, il est naturel de chercher une assignation satisfaisant un nombre maximal de
contraintes.

Un exemple de problème de satisfaisabilité est connu sous le nom de problème
SAT, dont l’objectif est de vérifier si une formule propositionnelle est satisfaisable ou
non. Cette modélisation a baucoup d’applications au niveau de la CAO, des bases de
données, ou de la vision par ordinateurs.

1.3 Problème du plus court chemin
Vous avez déjà rencontré ce type de problèmes en théorie des graphes. La re-

cherche d’un plus court chemin dans un graphe valué peut se faire entre deux som-
mets, d’un sommet à tous les autres, ou entre tous les couples de sommets. L’objectif
est évidemment de minimiser le coût. Ce type de problèmes se rencontre en Optimi-
sation dans les réseaux.

De nombreux algorithmes existent en fonction des caractéristiques du graphe :

• L’algorithme de Dijkstra s’utilise dans un graphe où tous les coûts des arcs
sont positifs. Sa complexité peut être enO(m+n · log(n)) (avec n le nombre
de sommets et m le nombre d’arcs).

• L’algorithme de Bellman-Ford fonctionne avec des arcs à coûts négatifs. Sa
complexité peut être en O(nm).

• L’algorithme de Floyd-Warshall sert à déterminer le plus court chemin entre
toute paire de sommets. Sa complexité peut être en O(n3).

• Une bonne solution au problème du plus court chemin est fourni par l’algo-
rithme de Ford-Dikstra dans lequel un marquage des sommets est effectué. La
complexité est en O(n2).

Notez que ce problème n’est pas NP-difficile !

1.4 Explosion combinatoire et complexité al-
gorithmique

Résoudre un problème de décision ou d’optimisation nécessite dans un premier
temps de modéliser le problème, c’est-à-dire à le formaliser, généralement sous la
forme d’un problème mathématique. Il faut également déterminer un algorithme qui
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permettra de le résoudre, si possible de manière efficace (c’est-à-dire, sans tester
toutes les combinaisons possibles). L’efficacité d’un algorithme s’évalue générale-
ment par sa complexité, c’est-à-dire l’ordre de grandeur du nombre de calculs qu’il va
falloir réaliser pour terminer l’algorithme.

Il n’est pas toujours possible de trouver un algorithme «efficace» à un problème,
c’est-à-dire qui trouvera la solution en temps raisonnable. Il existe même quelques
problèmes théoriques de référence pour lesquels on n’a jamais trouvé, en 50 ans de
recherche, un algorithme exact qui ne soit pas de complexité exponentielle. On n’a
jamais pu montrer non plus que c’était impossible. Ces problèmes sont dits «NP-
difficiles ». La coloration de graphe évoquée dans l’exemple de la section 1.1.2 en
est un. Trouver un tel algorithme, ou prouver qu’il n’en existe pas, est un des dé-
fis majeurs de l’informatique théorique. En attendant, on va généralement chercher
à calculer une solution approchée de ces problèmes.

Face à un problème, on commence normalement par chercher s’il n’est pas équi-
valent à un autre problème dont la complexité et/ou un bon algorithme sont déjà
connus… L’exemple de la section 1.1.1 n’est pas NP-difficile : il existe un algorithme
issu de la théorie des graphes pouvant le résoudre avec un nombre d’opérations de
l’ordre de n3 [2].

Il existe également des outils, inspirés de l’intelligence artificielle, qui, sans tou-
jours rivaliser avec une étude approfondie d’un problème donné, sont généralement
assez efficaces, notamment quand le problème est NP-difficile. Nous allons découvrir
quelques uns de ces outils dans la suite du cours.

1.5 Le cours
L’objectif de ce cours est de fournir les bases de la recherche opérationnelle à un

public de DUT Informatique. La taxonomie de l’optimisation (ou classification d’enti-
tés) ne sera évidemment pas visitée dans son intégralité. Nous nous limiterons à l’op-
timisation discrète (en nombres entiers et combinatoire) et à l’optimisation continue
pour la programmation linéaire (cf. figure 1.2). En parallèle, la programmation par
contraintes, faisant intervenir une formalisation spécifique du problème, sera pré-
sentée.

Dans le domaine de l’optimisation discrète sont classés les problèmes pour les-
quels certaines variables du modèle appartiennent à un ensemble discret. De nom-
breux problèmes bien connus se retrouvent dans cette catégorie : problèmes d’affec-
tation, d’emploi du temps, d’ordonnancement… Parmi les branches existantes de ce
domaine, deux sont principalement étudiées par la suite :

• la programmation en nombres entiers, pour laquelle l’ensemble discret est un
ensemble d’entiers ;

• l’optimisation combinatoire, pour lequel l’ensemble discret est un ensemble
d’objets. Cette partie est uniquement introduite à titre informatif dans ce do-
cument, mais sera décrite plus en détails dans le reste du module.

Dans le domaine de l’optimisation continue, et plus spécifiquement en pro-
grammation linéaire, la fonction-objectif et les contraintes sont tous les deux linéaires
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Fig. 1.2 : Taxonomie.
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(ou affines).
Pour chacune de ces deux familles, les concepts de base sont présentés et un

exemple-type illustre nos propos.
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Chapitre 2
Programmation par
contraintes

La programmation par contraintes puise ses racines dans les travaux des cher-
cheurs en IA des années 1970. Au milieu des années 1990, l’intégration de techniques
de recherche opérationnelle a permis de développer de nouveaux outils performants :
extrêmement expressifs, simples d’utilisation grâce à l’intégration de technologies is-
sues de l’IA, et relativement efficaces.

Pour ce cours, nous allons nous familiariser avec le langage de modélisation en
programmation par contraintes MiniZinc [4]. Une série d’outils basés sur MiniZinc,
notamment un solveur de contraintes, un environnement de développement (IDE)
et une documentation sont librement téléchargeables sur la page du projet. Ils sont
compatibles avec les systèmes Windows, Mac OS et Linux.

2.1 Problème de satisfaction ou optimisation
de contraintes

Unproblème de satisfaction de contraintes est composé de variables et de contraintes.
Les variables peuvent prendre n’importe quelle valeur prises dans un domaine à dé-
finir. Généralement, le domaine est un intervalle de nombres entiers : 1..10 repré-
sente les valeurs {1, 2, 3, . . . , 10}. Dans l’exemple de la coloration de cartes de la
section 1.1.2, chaque région sera représentée par une variable. Elle pourra prendre
une valeur entre 1 et 4 suivant la couleur dans laquelle la région sera colorée.

Attention, si MiniZinc (comme d’autres langages de modélisation) est considéré
comme un langage de programmation, il est fondamentalement différent des lan-
gages impératifs comme le Java ou le C. On ne manipule pas d’états mémoire, il n’y
a pas de structure de contrôle, les instructions ne sont pas exécutées dans un ordre
défini : les variables ne sont pas des emplacements dans la mémoire de l’ordinateur

9



10 CHAPITRE 2. PROGRAMMATION PAR CONTRAINTES

qu’il est possible de modifier, mais des « inconnues», au sens mathématique, que le
solveur devra affecter d’une manière ou d’une autre sans intervention humaine. Mi-
niZinc fait partie de la famille des langages «déclaratifs» comme le SQL ou même le
HTML : on définit le problème et la solution que l’on recherche, mais pas les algo-
rithmes ou méthodes de résolution.

Les contraintes sont simplement des prédicats (également appelés «expressions
booléennes»), tels qu’on les retrouve dans la plupart des langages de programma-
tion. Ce sont des formules ou des fonctions qui prennent en argument un ensemble
de variables. Elles renvoient vrai si la contrainte est validée par une affectation de
ces variables. Par exemple, pour des variables X , Y , et Z, on pourrait avoir : X <
Y,X ̸= Y,X = Y + Z,X = |Y | , etc. Les fameux systèmes de n équations à n in-
connues étudiés au collège et au lycée peuvent être considérés comme des problèmes
de satisfaction de contraintes.

Ici, la seule limite sera l’expressivité du langage et les fonctionnalités du sol-
veur. MiniZinc supporte une centaine de types de contraintes. Pour la coloration de
graphes, les contraintes vont imposer que deux nœuds voisins soient colorés diffé-
remment (X ̸= Y ).

Voici un programme MiniZinc qui modélise la coloration de la carte de France
en quatre couleurs (représentées par les entiers 1 à 4) :

var 1 . . 4 : n o r d _p i c a r d i e ; var 1 . . 4 : normandie ;
var 1 . . 4 : i l e _ d e _ f r a n c e ; var 1 . . 4 : e s t ;
var 1 . . 4 : b r e t agne ; var 1 . . 4 : p a y s _ d e _ l a _ l o i r e ;
var 1 . . 4 : c e n t r e ; var 1 . . 4 : bourgogne_f ranchecomte ;
var 1 . . 4 : sud_oues t ; var 1 . . 4 : r honea lpe s_auve rgne ;
var 1 . . 4 : sud ; var 1 . . 4 : paca ;

constra int no r d _p i c a r d i e != normandie ;
constra int no r d _p i c a r d i e != i l e _ d e _ f r a n c e ;
constra int no r d _p i c a r d i e != e s t ;
constra int normandie != b r e tagne ;
constra int normandie != p a y s _ d e _ l a _ l o i r e ;
constra int normandie != c e n t r e ;
constra int normandie != i l e _ d e _ f r a n c e ;
constra int i l e _ d e _ f r a n c e != c e n t r e ;
% . . .

solve s a t i s f y ;

L’instruction var 1..4 : nord_picardie ; déclare une variable nord_picardie , qui
peut prendre une valeur entière comprise entre 1 et 4. Plus loin, la ligne constraint
nord_picardie != normandie ; impose que la variable nord_picardie prenne une va-
leur différente de la variable normandie. Enfin, solve satisfy ; indique que le solveur
devra trouver une solution quelconque, satisfaisant toutes les contraintes.

Une fois le programme écrit, il suffit de lancer le solveur pour obtenir une solu-
tion :

> m in i z i n c f r a n c e . mzn
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no r d _p i c a r d i e = 1 ;
normandie = 3 ;
i l e _ d e _ f r a n c e = 2 ;
e s t = 3 ;
b r e t agne = 1 ;
p a y s _ d e _ l a _ l o i r e = 2 ;
c e n t r e = 1 ;
bourgogne_f ranchecomte = 4 ;
sud_oues t = 3 ;
rhonea lpe s_auve rgne = 2 ;
sud = 1 ;
paca = 3 ;
−−−−−−−−−−

L’énoncé complet du problème consiste à trouver le nombre minimal de couleurs
pour colorer la carte. Il y a un objectif à optimiser, on parle donc de problème d’optimi-
sation de contraintes. Concrètement, on ajoute ce nombre de couleurs comme variable
au problème, et on va demander au solveur de minimiser ce nombre. Comme on sait
que c’est toujours possible avec 4 couleurs, et toujours impossible avec une seule
couleur, on peut se fixer ce minimum et maximum. Voici la variante du problème :

var 2 . . 4 : nb_cou l eu r s ;

var 1 . . 4 : n o r d _p i c a r d i e ; var 1 . . 4 : normandie ;
var 1 . . 4 : i l e _ d e _ f r a n c e ; var 1 . . 4 : e s t ;
% . . .

constra int no r d _p i c a r d i e <= nb_cou l eu r s ;
constra int normandie <= nb_cou l eu r s ;
constra int i l e _ d e _ f r a n c e <= nb_cou l eu r s ;
constra int e s t <= nb_cou l eu r s ;
% . . .

constra int no r d _p i c a r d i e != normandie ;
constra int no r d _p i c a r d i e != i l e _ d e _ f r a n c e ;
constra int no r d _p i c a r d i e != e s t ;
constra int normandie != b r e tagne ;
% . . .

solve minimize nb_cou l eu r s ;

constraint nord_picardie <= nb_couleurs ;… est une série de contraintes qui
permet de fixer facilement le nombre de couleurs maximal du problème. Enfin, la
dernière ligne a été modifiée en solve minimize nb_couleurs ;, pour que le solveur
trouve maintenant une solution pour laquelle nb_couleurs soit le plus petit possible.



12 CHAPITRE 2. PROGRAMMATION PAR CONTRAINTES

2.2 Le langage MiniZinc
2.2.1 Instructions et commentaires

Une instructionMiniZinc est une déclaration de paramètre, de variable, de contrainte
ou d’objectif de résolution. Toute déclaration se termine par un point-virgule.

On peut commenter une ligne avec le caractère %.

2.2.2 Paramètres
On peut déclarer en MiniZinc des paramètres (ou constantes) avec la syntaxe :

par type : nom [= valeur] ;

par in t : n b_ cou l eu r s = 3 ;

Les types supportés par MiniZinc sont bool, int, float et string. Les tableaux et
matrices sont également supportés (voir section suivante).

On peut également déclarer le paramètre et donner sa valeur plus loin dans le
programme :

par in t : parameter ;

% . . .

parameter = 3 ;

Pour de nombreux problèmes, cela peut permettre de définir une modélisation
générale du problème, et les cas particuliers dans une autre section du programme,
voire dans un fichier séparé. On ne peut évidemment affecter un paramètre qu’une
seule fois.

Les valeurs peuvent être des expressions (3 ∗ 2 + 4…)
Les paramètres apparaissent dans les contraintes exactement comme s’il s’agis-

sait de variables.

2.2.3 Variables
Les variables sont les « inconnues» du problème, que le solveur va essayer d’af-

fecter. Chaque variable doit être définie avec son domaine, c’est-à-dire l’ensemble
des valeurs possibles pour la variable. Les variables peuvent être booléenes, entières
ou flottantes.

On déclare une variable avec la syntaxe : var domaine : nom [= expression] ;

var in t : ex1 ;
var 1 . . 6 : ex2 ;
var { 1 , 2 , 5 , 9 } : ex3 ;

Le domaine peut être un type, un intervalle ou une liste de valeurs. Les domains
infinis (notamment int) sont mal supportés par les solveurs (MiniZinc considère qu’il
s’agit du domaine−10 000 000..10 000 000, qui n’est pas vraiment infini), évitez-les
si possible.



2.2. LE LANGAGE MINIZINC 13

2.2.4 Contraintes
Les contraintes définissent le problème. Toute contrainte est une expression boo-

léenne, qui peut être définie à l’aide des opérateurs et fonctions suivantes :

Opérateurs logiques (si x et y sont des booléens) :

Conjonction («et» logique) : x /\ y

Disjonction («ou» logique) : x \/ y

Implication (si - alors) : x -> y

Équivalence (si et seulement si) : x <-> y

Négation : not(x)

«ou» exclusif : x xor y

Opérateurs de comparaison : On retrouve les opérateurs classiques dont la
signification est évidente : !=, <, <=, =, >, >=

Opérateurs arithmétiques : On retrouve les opérateurs classiques dont la si-
gnification est évidente : *, +, -, /, mais aussi les fonctions mathématiques classiques
abs(x), max(x, y), min(x, y), mod(x ,y), pow(x, y), div(x, y) (ce dernier réalise une di-
vision entière).

Fonctions sur les réels : Quand on travaille sur les types réels, on a accès à
des fonctions mathématiques spécifiques : fonctions trigonométriques, logarithmes,
racines, etc.

2.2.5 Type de problème
Un programme MiniZinc se termine toujours par l’objectif à réaliser. Celui-ci

peut être de trois types :

• solve satisfy ;

• solve minimize expression arithmétique ;

• solve maximize expression arithmétique ;

Dans le premier cas, on cherche simplement une solution, dans les autres cas on
cherche une solution qui optimise (en min ou en max) l’expression donnée.
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2.2.6 Tableaux
Comme dans la plupart des langages de programmation, on peut définir des ta-

bleaux (et des matrices) de variables ou constantes. Ici, les tableaux permettent no-
tamment de définir des modèles de problèmes dont la taille peut varier (comme le
nombre de personnes dans l’exemple de la section 1.1.1).

La syntaxe de la déclaration est :
array [intervalle1, intervalle2, …] of variable/paramètre : nom

Les intervalles correspondent aux indices de la matrice, chaque intervalle cor-
respondant à une dimension de la matrice. Notez qu’on peut donc les démarrer à
n’importe quelle valeur (le plus souvent 1). Dans l’exemple suivant, on définit un
tableau tab de 10 variables (indicées de 1 à 10) dont le domaine est l’intervalle 1..20 :

array [ 1 . . 1 0 ] of var 1 . . 2 0 : tab ;

Ici, on déclare les paramètres, notamment la matrice, qui vont servir à définir le
problème de l’exemple de la section 1.1.1 :

par in t : nbpers ;
array [ 1 . . nbpers , 1 . . nbpers ] of par in t : p r e f e r e n c e s ;

Les personnes sont représentées par un tableau de variables. Le premier couple
est représenté par les variables des indices 1 et 2, le deuxième couple par les variables
des indices 3 et 4, etc. La personne A sera représentée par la valeur 1, la personne B
par la valeur 2, etc.

array [ 1 . . nbpers ] of var 1 . . nbpers : c oup l e s ;

Le contenu des tableaux peut être défini, pour les tableaux à une dimension, par
la syntaxe : [ expr1, expr2, … ], et pour les tableaux/matrices à deux dimensions, par
la syntaxe :

[| l1c1, l1c2, …, |
l2c1, l2c2, …, |
… |]

Les données de la section 1.1.1 pourraient être définies comme suit :

nbpers = 4 ;
p r e f e r e n c e s = [ |

0 , 0 , 6 , 1 0 , |
3 , 0 , 7 , 2 , |
3 , 9 , 0 , 4 , |
7 , 8 , 4 , 0 | ] ;

La solution «A avec C, B avec D» sera ainsi représentée par le tableau couples
= [1, 3, 2, 4].

On accède aux éléments d’un tableau avec une syntaxe classique : a[i] corres-
pond à l’élément d’indice i dans le tableau a. Pour une matrice, m[i, j] correspond à
l’élément situé à la ligne d’indice i et la colonne d’indice j dans la matrice m.
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2.2.7 Générateurs
Minizinc propose une syntaxe permettant de générer le contenu d’un tableau. Il

s’agit d’une syntaxe que l’on retrouve souvent en programmation fonctionnelle et en
mathématiques.

L’idée est d’appliquer une expression (i.e., une formule) sur un ensemble, généra-
lement défini à partir d’intervalles, de produits cartésiens et de filtres. On obtient un
tableau qui résulte de l’application de l’expression sur chaque élément de l’ensemble.
La syntaxe est [ expression | ensemble ]

Par exemple, [ 2 * i | i in 1..3 ] correspond au tableau [ 2, 4, 6 ]. On la lit «pour
tout i de l’intervalle 1..3, réaliser l’opération 2× i».

On peut faire des choses plus compliquées, par exemple : [ i * j | i, j in 1..3 where
i < j ] . « i, j in 1..3» réalise le produit cartésien 1..3 × 1..3 = {(1, 1), (1, 2), (1, 3),
(2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}. Lewhere filtre ce produit cartésien pour ne
garder que les éléments pour lesquels i < j. Enfin, on réalise pour chaque élément
du tableau l’opération i× j. On obtient le tableau [ 1 * 2, 1 * 3, 2 * 3 ] = [ 2, 3, 6 ].

On peut utiliser les générateurs pour générer des contraintes, à l’aide notamment
du mot-clé « forall» :

constra int f o r a l l ( [ c oup l e s [ i ] != c oup l e s [ j ]
| i , j in 1 . . nbpers where i < j ] ) ;

Équivalent à couples[1] != couples[2], couples[1] != couples[3], couples[2] !=
couples[3], etc., ce qui signifie que tous les éléments du tableau couples devront être
différents.

Enfin, il existe une syntaxe alternative, un peu plus proche du langage mathé-
matique pour le mot-clé forall, qui consiste à placer les ensembles servant à la gé-
nération avant l’expression :

constra int f o r a l l ( i , j in 1 . . nbpers where i < j ) (
c oup l e s [ i ] != c oup l e s [ j ] ) ;

Ce dernier exemple est tout à fait équivalent au précédent. Observez l’empla-
cement des parenthèses. On peut également utiliser cette syntaxe pour réaliser des
agrégats, portant sur des nombres entiers : sum, product, min et max, par exemple :

constra int t o t a l = sum ( i in 1 . . nbpers ) ( c oup l e s [ i ] ) ;

Cela correspond à la formule mathématique :

total =
∑

i∈1..nbpers

couples[i]

2.2.8 Contraintes portant sur des tableaux
Il est possible d’utiliser une variable comme indice de tableau ou de matrice. On

pourra ainsi obtenir la satisfaction d’un couple dans le problème de la section 1.1.1 :

solve maximize sum ( i in 1 . . ( nbpers div 2 ) ) (
p r e f e r e n c e s [ c oup l e s [2 ∗ i − 1 ] , c oup l e s [2 ∗ i ] ] +
p r e f e r e n c e s [ c oup l e s [2 ∗ i ] , c oup l e s [2 ∗ i − 1 ] ] ) ;
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D’autres fonctions sont disponibles :

Concaténation de deux tableaux : x ++ y (tableaux à une dimension uniquement)

Changement de dimension : array1d(x) si x est un tableau à une dimension, il est
«aplati» en une dimension (pour une matrice à deux dimensions par exemple,
les lignes sont mises bout-à-bout).
array2d(x , 1..10, 1..20) transforme le tableau x en matrice à deux dimen-
sions de 10 lignes et 20 colonnes (on peut évidemment changer la taille et les
indices)

Projection : col (x , n) renvoie la nᵉ colonne de la matrice x, row(x, n) renvoie la
nᵉ ligne

Taille : length(x) renvoie le nombre d’éléments du tableau x

2.2.9 Contraintes globales
Les contraintes globales imposent des propriétés «complexes» sur des tableaux.

Elles correspondent souvent à des sous-problèmes très généraux qui pourraient être
modélisés séparément, mais de manière moins efficaces. Elles sont indispensables
pour modéliser efficacement des problèmes de taille industrielle. Elles doivent être
« importées» pour être utilisées dans MiniZinc avec la commande include.

all_different(x) : impose que toutes les valeurs du tableau x soient différentes,

alldifferent_except_0(x) : idem, mais la valeur 0 peut apparaitre plusieurs fois,

nvalue(x) : renvoie le nombre de valeurs différentes apparaissant dans le tableau x,

count(x, n) : renvoie le nombre de fois où la valeur y apparait dans le tableau x,

member(x, e) : impose que e soit un élément du tableau x,

lex_less(x, y) : impose que les valeurs du tableau x soient avant les valeurs du tableau
y dans l’ordre lexicographique (i.e., «alphabétique»). Il y aussi les variantes
lex_lesseq (les tableaux peuvent être égaux), lex_greater et lex_greatereq ,

maximum(x) : renvoie la plus grande valeur du tableau x (il y a aussi minimum),

D’autre contraintes sont disponibles, n’hésitez pas à consulter la documentation
officielle de MiniZinc [4]…

2.3 Modèle final pour l’affectation de coloca-
taires

On reprend les extraits disséminés dans ce chapitre, en utilisant ici la contrainte
globale all_different et quelques contraintes supplémentaires pour éliminer des sy-
métries (cf section 2.4.3) :
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include ” a l l _ d i f f e r e n t . mzn ” ;

par in t : nbpers ;
array [ 1 . . nbpers , 1 . . nbpers ] of par in t : p r e f e r e n c e s ;

array [ 1 . . nbpers ] of var 1 . . nbpers : c oup l e s ;

constra int a l l _ d i f f e r e n t ( c oup l e s ) ;

% É l i m i n a t i o n de s s ym é t r i e s
constra int f o r a l l ( i in 1 . . nbpers div 2 ) (

c oup l e s [ 2 ∗ i −1] < coup l e s [ 2 ∗ i ] ) ;

constra int f o r a l l ( i in 2 . . nbpers div 2 ) (
c oup l e s [ 2 ∗ i −3] < coup l e s [ 2 ∗ i −1] ) ;

solve maximize sum ( i in 1 . . nbpers div 2 ) (
p r e f e r e n c e s [ c oup l e s [2 ∗ i − 1 ] , c oup l e s [2 ∗ i ] ] +
p r e f e r e n c e s [ c oup l e s [2 ∗ i ] , c oup l e s [2 ∗ i − 1 ] ] ) ;

nbpers = 4 ;
p r e f e r e n c e s = [ |

0 , 0 , 6 , 1 0 , |
3 , 0 , 7 , 2 , |
3 , 9 , 0 , 4 , |
7 , 8 , 4 , 0 | ] ;

2.4 Comment ça marche?

En réalité, le problème de satisfaction de contraintes (CSP) est un problème com-
binatoire «générique», c’est-à-dire que n’importe quel problème combinatoire peut
être converti en CSP. En théorie de la complexité algorithmique, on dit que le CSP est
NP-complet. Si on arrive à résoudre efficacement le CSP, on aura résolu tous le pro-
blèmes combinatoires ! En attendant, les seules techniques connues pour résoudre
le CSP utilisent soit des algorithmes à complexité exponentielle (c’est-à-dire qu’à
chaque fois qu’on ajoute une variable au problème, on multiplie potentiellement le
temps de calcul par le nombre de valeurs de son domaine), soit des algorithmes qui
calculent des solutions approchées. Par exemple, on peut ne pas réussir à satisfaire
toutes les contraintes, ou dans le cas des problèmes d’optimisation, s’arrêter sur une
solution correcte sans aller jusqu’à l’optimal. Pour une coloration de graphe de très
grande taille, on pourra chercher à le colorer en 5 couleurs, même si c’est théorique-
ment possible de le faire avec seulement 4.
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2.4.1 L’algorithme d’exploration arborescente systéma-
tique

Pour résoudre un problème combinatoire de manière générique, la technique ha-
bituelle consiste à construire un arbre de recherche. On prend une variable du pro-
blème, et on lui affecte une valeur, puis on prend une deuxième variable, on lui affecte
une valeur, et ainsi de suite. Si la valeur choisie ne satisfait pas une contrainte, on
annule la dernière décision et on choisit une autre valeur. Dans l’exemple de la colo-
ration de la carte de France (cf section 1.1.2), on peut suivre la démarche suivante :

1. on colore le Nord-Pas-de-Calais-Picardie avec la première couleur disponible,
le blanc.

2. on colore la Normandie voisine également en blanc.

3. comme on ne satisfait pas la contrainte nord_picardie != normandie, on re-
vient au point 2.

4. on colore la Normandie avec la deuxième couleur disponible, le rouge.

5. on colore l’Île-de-France en blanc.

6. comme on ne satisfait pas la contrainte nord_picardie != ile_de_france , on
revient au point 5.

7. on colore l’Île-de-France en rouge.

8. comme on ne satisfait pas la contrainte normandie != ile_de_france , on re-
vient au point 7.

9. etc.

2.4.2 Le filtrage
Pour améliorer les performances de l’algorithme d’exploration, l’idée centrale de

la programmation par contraintes est de filtrer les valeurs des domaines : au fur et à
mesure de la recherche, on supprime des valeurs des domaines des variables quand
les contraintes permettent de se rendre facilement compte qu’elles ne peuvent plus
être dans une solution. Reprenons l’exemple de la carte de France.

1. on colore le Nord-Pas-de-Calais-Picardie avec la première couleur disponible,
le blanc.

2. par filtrage, on supprime le blanc des régions voisines : Normandie, Île de
France et Est

3. on affecte alors directement le rouge à la Normandie

4. par filtrage, on supprime le rouge des régions voisines (Bretagne, Loire-Atlantique,
Centre et Île de France ; le rouge n’est déjà plus disponible pour le Nord-
Picardie).
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5. on affecte alors directement la troisième couleur à l’Île-de-France, le vert.

6. on supprime le vert des régions voisines.

7. etc.

L’intérêt du filtrage, c’est qu’il est parfois possible de se rendre compte très vite
que certaines affectations sont vouées à l’échec, ce qui permet d’éviter d’explorer de
grandes parties de l’arbre. Une bonne modélisation d’un problème essaie d’utiliser
au mieux les contraintes disponibles pour améliorer le filtrage. Une bonne connais-
sance des contraintes disponibles (et notamment des contraintes globales) est né-
cessaire. Par exemple, on peut utiliser une contrainte all_different(nord_picardie,
ile_de_france, est) pour remplacer trois contraintes d’inégalité. Si un filtrage sup-
prime le blanc et le noir de l’Île-de-France et de l’Est, on peut en déduire que l’une
des deux sera nécessairement verte et l’autre rouge. On peut alors immédiatement
supprimer ces deux couleurs du Nord.

2.4.3 Le problème des symétries
Dans un problème, une symétrie survient quand on peut déduire une solution à

partir d’une autre. Pour la carte de France, si on trouve une solution, on peut simple-
ment inverser deux couleurs pour retrouver une autre solution. Pour le problème des
appariements de la section 1.1.1, si on a une solution en appariant A avec B, on a une
autre solution simplement en appariant B avec A. Cependant, l’algorithme d’explo-
ration systématique, même s’il n’a pas trouvé de solution en appariant A avec B, va
quand même essayer d’associer B avec A. Cela génère de nombreux calculs inutile :
chaque symétrie va potentiellement multiplier le temps de calcul par 2.

Pour éliminer les symétries, on fixe un ordre aux solutions : chaque couple dans
l’ordre alphabétique, et l’ensemble des couples également dans l’ordre alphabétique.
La contrainte globale lex_lesseq est beaucoup utilisée pour gérer de genre de cas.
Dans le problème de coloration, on peut simplement fixer les couleurs de trois régions
mutuellement adjacentes pour diviser par 12 les temps de calcul.

2.4.4 Pour aller plus loin…
Au delà des techniques de base, les chercheurs en IA continuent d’améliorer les

solveurs. Par exemple, l’ordre dans lequel les variables sont affectées a beaucoup
d’impact sur la taille de l’arbre de recherche : il vaut mieux commencer par les va-
riables les plus contraintes. Si on ne trouve pas de solution au bout d’un certain
temps, il peut être intéressant de recommencer la recherche depuis le début en chan-
geant l’ordre d’affectation. On peut chercher à combiner les contraintes entre elles
pour améliorer le filtrage. On peut cherche à paralléliser les algorithmes de recherche
pour mieux exploiter les microprocesseurs modernes, etc.
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Chapitre 3
La Programmation Linéaire

3.1 Comment liermathématiques et optimisa-
tion?

Tout le monde comprend en quoi consiste une optimisation. D’un point de vue
mathématique, une maximisation peut se modéliser par la formulation 1

Pour une fonction f : Rn → R donnée, et un ensemble M ⊆ Rn, trouver
x̂ ∈ M qui maximise f sur M tel que : f(x̂) ≥ f(x), ∀x ∈ M .

Problème 1 (Maximisation)

Du point de vue de la terminologie :

• f est appelée fonction-objectif.

• M est appelé espace admissible.

• x̂ est appelé maximiseur de f sur M .

• Tout x ∈ M est appelé solution réalisable ou admissible.

• Les composantes xi, i = {1, . . . , n} du vecteur x sont appelées variables
d’optimisation ou de décision.

Il est possible de maximiser ou de minimiser f surM . Pour ne pas faire de redon-
dance, on ne travaillera que sur des maximisations. Nous verrons qu’il est toujours
possible de transformer une minimisation en maximisation.

21
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3.2 Inéquations linéaires
Partons sur de bonnes bases en rappelant quelques notions liées aux inéquations.

Une inéquation linéaire est une expression de la forme :

a1x1 + a2x2 + . . .+ anxn ≤ b,

avec xi les variables, ai les cœfficients des variables, b une constante et n le
nombre d’inconnues.

Définition 1 (Inéquation linéaire)

On peut évidemment inverser le sens d’une inéquation en multipliant par un
nombre négatif de chaque côté.

On appelera solution de l’inéquation linéaire a1x1+a2x2+ . . .+anxn ≤ b
tout n-uplet (y1, . . . , yn) tel que l’inégalité a1y1 + a2y2 + . . .+ anyn ≤ b
est vraie.

Définition 2 (Solution d’une inéquation linéaire)

Fig. 3.1 : Exemple de résolution graphique d’une inéquation dans le plan.
L’ensemble des solutions de l’inéquation 2x1 + 3x2 ≤ 9 est un demi-plan
dans le système d’axes Ox1x2 (en gris). La frontière de ce demi-plan est la
droite 2x1 + 3x2 = 9.
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On appelle système de m inéquations linéaires à n inconnues un système de
la forme : 

a11x1 + a12x2 + a13x3 + . . .+ a1nxn ≤ b1

a21x1 + a22x2 + a23x3 + . . .+ a2nxn ≤ b2

a31x1 + a32x2 + a33x3 + . . .+ a3nxn ≤ b3

...
am1x1 + am2x2 + am3x3 + . . .+ amnxn ≤ bm.

où xj est une variable dans la colonne j, aij est le cœfficient de la variable
xj sur la ligne i, bi est la constante de la ligne i, n est lenombre d’inconnues
et m est le nombre d’inéquations.

Définition 3 (Système d’inéquations linéaires)

3.3 De l’algèbre au programme linéaire
Faisons quelques rappels d’algèbre linéaire. Nous savons tous que cela est néces-

saire ! (cf. module M1202)

Une fonction f : Rn → R est linéaire si et seulement si f(x+ y) = f(x)+
f(y) et f(λx) = λf(x), avec x, y ∈ Rn et λ ∈ R.

Définition 4 (Fonction linéaire)

Exemple de fonctions linéaires :

• f1(x) = x,

• f2(x) = 3x1 − 5x2,

• f3(x) = Ax.

Exemple de fonctions non-linéaires :

• f5(x) = 1,

• f6(x) = x+ 1,

• f7(x) = x2,
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• f7(x) = sin(x).

Toute fonction linéaire f : Rn → R peut s’exprimer dans la forme f(x) =
Ax, avec A ∈ Rm×n une matrice.

Remarque 1

Fournissons quelques détails maintenant sur les notations :

• x ∈ Rn est le vecteur colonne


x1

x2

...
xn

 avec x1, x2, . . . , xn ∈ R.

• xT correspond à la transposée du vecteur x, qui est alors le vecteur ligne
(x1, x2, . . . , xn).

• A ∈ Rm×n est la matrice


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

.

• AT est la transposée de la matrice A, soit


a11 a21 . . . an1

a12 a22 . . . an2

...
...

. . .
...

a1n a2n . . . anm

.

À partir de ces notations, nous allons définir ce qu’est notre problème d’opti-
misation linéaire. Il s’agit en effet d’un cas particulier d’optimisation, pour lequel la
fonction f est linéaire et l’ensemble M est défini comme l’intersection d’un nombre
fini de plans à partir des contraintes d’égalité et d’inégalités. Voyons de quoi cela a
l’air.
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(LP )



max cTx = c1x1 + c1x1 + . . .+ cnxn =
n∑

i=1

cixi

ai1x1 + ai2x2 + . . .+ ainxn

≤
=
≥

 bi, i = 1, . . . ,m

xi

(
≤
≥

)
0, i ∈ I ⊆ {1, . . . ,m}

où x ∈ Rn est le vecteur de variables inconnues.

La fonction f(x) = cTx est appelée la fonction-objectif ou fonction
de coût ou fonction économique. Le vecteur c ∈ Rn est le vecteur de
coût. La matrice A (de terme général (aij)) et le vecteur b collectent les
informations des contraintes.

Définition 5 (Programme Linéaire)

Généralement, la matrice A n’est pas carrée (m ̸= n). Par conséquent, la
résolution du (LP) est impossible par inversion matricielle. Habituellement,
A a plus de colonnes que de lignes, signifiant qu’il y a plus d’inconnues que
d’équations de contraintes. Le système est sous-déterminé. De ce fait, un
grand choix de solutions potentielles maximisant cTx existe dans l’espace
admissible M .

Remarque 2 (Résolution du (LP))

Dans la littérature, l’opérateur de minimisation remplace parfois celui de
maximisation. Le passage de l’un à l’autre requiert une simplemanipulation :
la maximisation de cTx devient la minimisation de −cTx. Le résultat de la
fonction objectif sera du coup −f(x).

Remarque 3 (Maximisation et minimisation)

3.4 Résolution d’un problème linéaire
La résolution du problème (LP) peut nécessiter une réécriture pour appliquer des

algorithmes de résolution comme celui du simplexe (cf. section 3.4.3). Toutefois, dans



26 CHAPITRE 3. LA PROGRAMMATION LINÉAIRE

le cas où seules 2 voire 3 variables sont utilisées, une résolution graphique peut être
effectuée.

3.4.1 Résolution graphique
Par souci de lecture et de construction des graphiques, nous nous limiterons au

cas 2D. Nous avons évoqué au préalable la notion de demi-plan comme solution d’une
inéquation, chaque inéquation correspondant à une contrainte.

L’idée est simple : construire la zone-solution en obtenant l’intersection de tous
les demi-plans qui sont solutions des inéquations.

Puisqu’un dessin vaut mieux qu’un long discours, illustrons nos propos par un
exemple. Par la suite, nous allons chercher à résoudre le (LP) suivant :

max 100x1 + 250x2

sujet à : x1 + x2 ≤ 40,

40x1 + 120x2 ≤ 2400,

6x1 + 12x2 ≤ 312,

x1, x2 ≥ 0.

Généralités sur les fonctions de R2

Chaque contrainte correspond permet d’établir une équation de droite. L’équa-
tion générale d’une droite dans R2 s’écrit :

h(x, y) = ax+ by = c.

À partir de cette formulation, nous pouvons définir un vecteur normal à la droite,
i.e. la perpendiculaire à la droite. Ce vecteur, noté nh ici, s’écrit :

nh =

(
a
b

)
.

Il est orienté dans la direction des valeurs croissantes de h. S’il est orienté dans
l’autre sens, il sera tourné vers les valeurs décroissantes de h. Cette notion est essen-
tielle pour savoir quel demi-plan il nous faut récupérer avec les inéquations.

Généralités sur les polyèdres convexes

L’espace réalisable est construit par l’intersection de tous les demi-espaces (car
soit on travaille avec ≤, soit avec ≥) à partir des contraintes. L’intersection de tous
ces demi-espaces est ce que l’on appelle un polyèdre.
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Un ensemble M est dit convexe si l’intégralité d’une ligne connectant deux
points de M appartient à M .

Définition 6 (Ensemble convexe)

(a) Ensemble convexe (b) Ensemble non-convexe

• L’ensemble-solution d’une inéquation linéaire est un ensemble
convexe.

• L’intersection de deux ou de plusieurs ensembles convexes est un en-
semble convexe.

• L’ensemble-solution d’un système d’inéquations linéaires est un en-
semble convexe.

Théorème 1 (À propos des ensembles convexes)

Le théorème suivant illustre finalement l’importance de la relation entre la solu-
tion du problème linéaire et de l’ensemble convexe.

Soit f une fonction linéaire définie sur un polyèdre convexe borné. Alors
la fonction f atteint sa valeur maximale en au moins un des sommets du
polyèdre convexe.

Théorème 2 (Solution sur un polyèdre)
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Au sujet des contraintes

Pour la résolution graphique, travaillons avec les 3 contraintes de notre problème.
Pour cela, nous introduisons les 3 fonctions linéaires suivantes :

• g1(x1, x2) = x1 + x2,

• g2(x1, x2) = 40x1 + 120x2,

• g3(x1, x2) = 6x1 + 12x2.

Les équations g1(x1, x2) = 0, g2(x1, x2) = 0, g3(x1, x2) = 0, définissent des
lignes droites dans R2.

Avec g1(x1, x2) = x1+x2, la normale est ng1 =

(
1
1

)
. Le vecteur pointant vers

les valeurs croissantes de g1, il va mener à tout point (x1, x2)
T avec g(x1, x2) > 40.

Dans la direction opposée, on atteindra tous les points (x1, x2)
T avec g(x1, x2) <

40. Puisque la contrainte du problème est x1 + x2 ≤ 40, seuls les points avec
g(x1, x2) < 40 sont dans l’espace réalisable.

Le même travail est effectuée avec les autres contraintes, ce qui nous fera donc
3 lignes au total (cf. figure 3.2).

Fig. 3.2 : Illustration des contraintes avec les 3 fonctions g1, g2 et g3.

Au sujet de la fonction-objectif

Maintenant que l’espace de solution admissible est obtenu, il nous reste à trouver
le meilleur point y appartenant qui satisfera au mieux la fonction de coût.

Dans notre problème, l’objectif est de maximiser :

f(x1, x2) = 100x1 + 250x2.
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Tous les points sur la droite f(x1, x2) = d donnera d comme valeur de la
fonction-objectif. La figure ci-dessous illustre deux déplacements de f :

1. Avec d = 3500,

2. Avec d = 5500.

Comme précédemment, les valeurs de la fonction vont augmenter dans la direc-
tion de la normale de f . Ici, sa normale est :

nf (x1, x2) =

(
100
250

)
.

Puisque nous devons maximiser f , nous allons déplacer la droite de la fonction-
objectif dans la direction de nf : le ou les derniers points de la ligne qui intersecteront
l’espace réalisable seront nos optimums. La figure 3.3 nous montre que la solution
optimale est trouvée en un point (x1, x2)

T = (30, 10)T , avec f(x1, x2) = 5500.

Fig. 3.3 : Déplacement de la fonction-objectif (en rouge) vers l’optimum (en
vert).

Configurations possibles

Au final, l’intersection entre la fonction-objectif et l’ensemble des contraintes -
noté Mc - peut conduire à 0, 1, ou à une infinité d’optimums. La figure 3.4 met en
évidence les différentes configurations qu’il est possible de rencontrer en program-
mation linéaire.
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Fig. 3.4 : Différentes géométries de l’espace réalisable (en gris), de la fonction-
objectif (en rouge) et de la solution optimale (en bleu).

• L’ensemble Mc peut être borné (les 2 tracés du haut de la figure 3.4)
ou non borné (les 2 tracés du bas de la figure 3.4).

• Si Mc est borné, il existera toujours une solution optimale.

• L’optimum peut être unique (les 2 tracés de gauche de la figure 3.4)
ou non (les 2 tracés de droite de la figure 3.4).

• Même siMc est non borné, une solution pourrait exister. Tout dépend
du vecteur de coût c.

• Si une solution optimale existe, l’un des sommets de Mc en fera
toujours partie.

Remarque 4

Résumé des étapes à suivre :

1. Tracer l’ensemble réalisable Mc à partir des contraintes.

2. Tracer la fonction-objectif. Dans la pratique, on la fait initialement passer par
0Rn (par (0, 0)T dans R2).
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3. Déplacer la ligne de la fonction-objectif dans la direction définie par le vecteur
c pour une maximisation.

4. La solution optimale est l’intersection la plus extrême entre Mc et la ligne de
la fonction-objectif.

3.4.2 Du programme linéaire à la forme standard

La résolution du simplexe se fait par des tableaux. Vous aurez l’occasion de vous
exercez à la main avec un nombre de contraintes et d’inconnues raisonnable. Dès que
leur nombre devient conséquent, la programmation est de mise.

La résolution du problème (LP) peut nécessiter une réécriture pour appliquer des
algorithmes de résolution. Détaillons la réécriture sous chacune de ces deux formes,
qui sont la forme canonique et la forme standard.

La forme canonique

La forme canonique est décrite dans l’encadré suivant. Il s’agit de la formulation
du problème linéaire avec des inéquations de même sens.

Soient c = (c1, c2, . . . , cn)
T ∈ Rn, b = (b1, b2, . . . , bm)T ∈ Rm et A =

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 ∈ Rm×n. Le programme linéaire canonique

consiste à trouver x = (x1, x2, . . . , xn)
T ∈ Rn tel que la fonction-objectif

n∑
i=1

cixi soit maximal tout en étant sujet aux contraintes :

n∑
j=1

aijxj ≤ bi, i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n.

Définition 7 (Forme canonique (LPC))
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• L’ensemble Mc = {x ∈ Rn|Ax ≤ b, x ≥ 0} est l’espace admissible
de (LPC).

• Si x ∈ Mc, x est une solution réalisable de (LPC).

• x̂ ∈ Mc est la solution optimale si ∀x ∈ Mc, cT x̂ ≥ cTx.

Remarque 5 (Au sujet du (LPC))

La transformation d’un problème (LP) en (LPC) se fait en mettant toutes les

contraintes sous la forme
n∑

j=1

aijxj ≤ bi et xj ≥ 0, j = 1, . . . , n. Un travail

est à effectuer sur les contraintes et les variables :

1. Les contraintes d’inégalités :

n∑
j=1

aijxj ≥ bi

peut être mis sous la forme ≤ en multipliant les deux opérandes par −1 :

n∑
j=1

(−aij)xj ≤ −bi

2. Les contraintes d’égalités :

n∑
j=1

aijxj = bi

peut être mis sous la forme ≤ en écrivant :

bi ≤
n∑

j=1

aijxj ≤ bi

On obtient alors deux inégalités plutôt qu’une seule égalité. En se servant du
premier point, on obtient les deux inégalités sous la bonne forme :

n∑
j=1

aijxj ≤ bi

n∑
j=1

(−aij)xj ≤ −bi
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3. Les variables libres :

Si une variable n’est pas contrainte à être positive ou nulle, elle est dite libre.
Tout nombre réel xi libre est décomposé en xi = x+

i −x−
i , avec x+

i , x
−
i ≥ 0.

Les contraintes x+
i ≥ 0 et x−

i ≥ 0 doivent par ailleurs être ajoutées. Pour
chaque xi, nous avons maintenant deux variables supplémentaires x+

i et x−
i .

Exemple :

Considérons le problème de maximisation suivant :

max −1,2x1 − 1,8x2 − x3

sujet à :

x1 ≥ −1

3
x1 − 2x3 ≤ 0

x1 − 2x2 ≤ 0

x2 − x1 ≤ 0

x3 − 2x2 ≤ 0

x1 + x2 + x3 = 1

x2, x3 ≥ 0.

La transformation en un (LPC) implique de changer certaines contraintes. La
variable x1 est une variable libre. Par conséquent, on remplace x1 par x+

1 − x−
1 ,

x+
i , x

−
i ≥ 0. La contrainte x1 + x2 + x3 devient : x+

1 − x−
1 + x2 + x3 ≤ 1 et

−x+
1 + x−

1 − x2 − x3 ≤ −1. La contrainte x1 ≥ − 1
3
devient −x+

1 + x−
1 ≤ 1

3
.

On obtient alors le programme linéaire canonique suivant :

max −1,2x1 − 1,8x2 − x3

sujet à : 

−1 1 0 0
1 −1 0 −2
1 −1 −2 0
−1 1 1 0
0 0 −2 1
1 −1 1 1
−1 1 −1 −1




x+
1

x−
1

x2

x3

 ≤



1/3
0
0
0
0
1
−1


, avec


x+
1

x−
1

x2

x3

 ≥ 0.

La forme canonique est très utile pour visualiser les contraintes et résoudre le
problème graphiquement. Comme indiqué précédemment, la visualisation sera d’au-
tant plus simple quen est petit (l’idéal étant une dimension 2, voire 3). Toutefois, pour
travailler avec des algorithmes de résolution, passer des inéquations aux équations
se révèle nécessaire. Découvrons pour cela la forme standard.



34 CHAPITRE 3. LA PROGRAMMATION LINÉAIRE

La forme standard

En partant d’inéquations, il va falloir utiliser des variables supplémentaires pour

transformer chaque contrainte en équations, sous la forme
n∑

j=1

aijxj = bi avec

xj ≥ 0. Cette étape nécessite quelques précautions.

Dans le cas simple, les contraintes sont toutes de type inférieur ou égal avec un
secondmembre b ≥ 0. La mise sous forme standard consiste, pour chaque contrainte,
à introduire les variables d’écart représentant l’écart entre la quantité disponible de
la ressource et la quantité effectivement utilisée par l’ensemble des xj . Formalisons
la forme standard.

Soient c = (c1, c2, . . . , cn)
T ∈ Rn, b = (b1, b2, . . . , bm)T ∈ Rm et A =

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 ∈ Rm×n, avec rang(A) = m. Le programme

linéaire standard consiste à trouver x = (x1, x2, . . . , xn)
T ∈ Rn tel que la

fonction-objectif
n∑

i=1

cixi soit maximal tout en étant sujet aux contraintes :

n∑
j=1

aijxj = bi, i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n.

Définition 8 (Forme standard (LPS))

Comment passer du (LPC) au (LPS) dans la pratique? Soit un programme linéaire
canonique comme défini plus haut. Nous définissons un vecteur y = (y1, . . . , ym)T ∈
Rm tel que :

n∑
j=1

aijxj ≤ bi, i = 1, . . . ,m ⇒
n∑

j=1

aijxj + yi = bi, i = 1, . . . ,m.

Ce vecteur y contient les variables d’écart. De même que pour x, y ≥ 0.

Avec x̂ = (x, y)T ∈ Rn+m, ĉ = (c, 0)T ∈ Rn+m et Â = (A|I) ∈ Rm×(n+m),
on obtient le (LPS) suivant :
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max ĉT x̂

sujet à : Âx̂ = b,

x̂ ≥ 0

• Le rang(A) = m signifie que toutes les contraintes sont linéairement
indépendantes (cf. module M1202 !).

• Le (LPS) n’a de sens que si m < n. Comme pour le (LP), il serait
possible de résoudre le problème par inversion matricielle sinon, ce
qui ne donnerait plus aucun sens à ce cours :).

• L’ensemble Ms = {x ∈ Rn|Ax = b, x ≥ 0} est l’espace admissible
du (LPS).

• Un élément x provenant de Ms est une solution réalisable du (LPS).

• x̂ ∈ Ms est la solution optimale si ∀x ∈ Ms, cT x̂ ≥ cTx.

• Attention ! Les quantités c, b etA ne sont pas lesmêmes dans le (LPC)
et dans le (LPS), puisque nous allons ajouter de nouvelles variables.

Remarque 6 (Au sujet du (LPS))

Dans les problèmes plus proches de la vie réelle, la modélisation et leur ré-
solution de problèmes n’est pas aussi simple. Certaines contraintes peuvent
être toutes de type inférieur, supérieur, égal, avec b ≤ 0 ou b ≥ 0. Des
précautions supplémentaires sont alors à prendre, car en appliquant le même
principe que pour les variables d’écart, l’origine que l’on prend habituelle-
ment comme solution initiale réalisable n’est plus une solution réalisable. Il
faut faire intervenir des variables de surplus et des variables artificielles.

Nous ne traiterons pas ce cas par la suite, mais sachez que nous ne travaillons
que sur un cas précis de programmation linéaire.

Remarque 7 (Attention, cas simple‼)

3.4.3 La résolution par les tableaux
Notations et principe général

La méthode par tableaux permet de calculer une solution optimale au (LP). Avant
d’aller plus loin, formulons le théorème fondamental de programmation linéaire.
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Soit un (LPS), avec Ms ̸= ∅. Alors :

• Soit la fonction-objectif n’est pas bornée et il n’y a pas de solution
optimale, soit le problème a une solution optimale et au moins un
sommet de Ms est parmi ces solutions.

• Si Ms est borné, une solution optimale existe, et x ∈ Ms est optimal
si et seulement si combinaison convexe de sommets optimaux.

Théorème 3 (Théorème fondamental de programmation linéaire)

Comme indiqué précédemment, il nous faut travailler sur le (LPS) :

max cTx

sujet à : Ax = b,

x ≥ 0.

L’idée du simplexe est de se déplacer d’un sommet de l’ensemble réalisable à un
voisin du même ensemble, puis de répéter la procédure jusquà ce que le sommet op-
timum soit atteint.

Introduisons les notations que nous utiliserons par la suite :

• Les lignes de A sont notées : aT
i = (ai1, . . . , ain) ∈ Rn, ∀i = 1, . . . ,m.

Soit :

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 =


aT
1

aT
2

...
aT
m

 .

• Les colonnes de A sont notées : aj = (a1j , . . . , amj) ∈ Rm, ∀j = 1, . . . , n.
Soit :

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 =
(
a1 a2 . . . an

)
.
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• Soit B = {i ∈ {1, . . . , n} |xi > 0} l’ensemble des indices des composantes
positives de x.

• Soit N = {1, . . . , n}\B = {i ∈ {1, . . . , n} |xi = 0} l’ensemble des indices
des composantes nulles de x.

En considérant B, on peut écrire :

b = Ax =
n∑

j=1

ajxj =
∑
j∈B

ajxj .

Cette équation linéaire de composantes de x a une unique solution si les vecteurs
aj , j ∈ B sont linéairement indépendants (cf. module M1202). Dans ce cas, x est dit
solution réalisable de la base.

x ∈ Ms est un sommet deMs si et seulement si x est une solution réalisable
de la base.

Théorème 4

Le principe général du simplexe est :

1. En considérant toutes les contraintes d’un (LPC), nous obtenons un ensemble
convexe. On sait en outre maintenant que la solution optimale, si elle existe,
est l’un des sommets de l’ensemble.

2. Pour la calculer, nous allons partir d’un de ces sommets.

3. Nous allons nous déplacer de sommet en sommet le long des arêtes du
polyèdre convexe jusqu’à ce que nous ayons trouver la solution optimale.

Il reste donc à répondre aux 3 questions suivantes :

1. Comment choisir l’un des sommets du polyèdre?

2. Comment se déplacer de sommet en sommet?

3. Quels sont les critères d’arrêt nous indiquant que nous avons atteint notre
optimum?
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Choix d’un sommet

D’après le théorème 3, il est suffisant de calculer les sommets de l’ensemble réali-
sable pour obtenir aumoins une solution optimale. Mais comment peut-on faire cela?

Avant tout, grâce au théorème 4, nous savons qu’un sommet peut être caractérisé
par les colonnes indépendantes deA. En effet, la solution doit vérifier les contraintes,
i.e. qu’il faut trouver un vecteur x qui vérifie Ax = b. Appelons h l’application
linéaire telle que h(x) = Ax.

Pour que b soit un élément de Im(h) (les éléments Ax qui sont créés par h), il
faut évidemment trouver au moins un vecteur x tel que h(x) = b. Or, si les vec-
teurs colonnes deA sont linéairement indépendantes, le système admet une solution
unique (même principe qu’en M1202 ! Eh oui, ça vous sert !). Si on sélectionne des
colonnes de la matrice A et que cette sélection conduit à Ax = b, alors x est une
solution réalisable dans la base choisie.

Exemple de sélection de colonnes de A :

x =


−1
10
3
−4

 , A =

(
1 2 3 4
5 6 7 8

)
, B = {2, 4} ⇒ xB =

(
10
−4

)
, AB =

(
2 4
6 8

)
.

Le nombre de colonnes à choisir dépend évidemment de la dimension de x.
Si x est de dimension n, n colonnes seront nécessaires. Ceci est logique, car
pour déterminer un point dansR2, 2 lignes sont nécessaires ; dansR3, 3 plans
sont nécessaires ; il est possible de généraliser cela dans Rn, en travaillant
avec n hyperplans (entités de dimension (n− 1)).

Remarque 8 (Nombre de colonnes et dimension de l’espace)

L’algorithme 1 permet de calculer ces fameux sommets.
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1. Choisir de m colonnes indépendantes aj , j ∈ B,B ⊆ {1, . . . , n} de
A et construire N de sorte que N = {1, . . . , n}\B.

2. Fixer xN = 0 et résoudre l’équation linéaire ABxB = b.

3. Si xB ≥ 0, x est une solution réalisable de la base. Nous avons un
sommet ! S’il existe par contre un i ∈ B tel que xi < 0, alors x n’est
pas réalisable, et la procédure est à réitérer dans un autre choix de
colonnes indépendantes.

Algorithme 1 (Calcul d’un sommet du polyèdre)

Trouver les sommets du polyèdre consiste donc “simplement” à résoudre un sys-
tème d’équations linéaires.

Exemple de calcul de sommets :

Considérons les contraintes définies par Ax = b, x ≥ 0, avec :

A =

(
2 3 1 0
1 0 0 1

)
, b =

(
6
2

)
.

Il y a au plus
(4
2

)
combinaisons possibles de 2 colonnes de A :

1. B1 = {1, 2} ⇒ xB1 = A−1
B1

b =

(
2

2/3

)
, x1 = (2, 2/3, 0, 0)T .

2. B2 = {1, 3} ⇒ xB2 = A−1
B2

b =

(
2
2

)
, x2 = (2, 0, 2, 0)T .

3. B3 = {1, 4} ⇒ xB3 = A−1
B3

b =

(
3
−1

)
, x3 = (3, 0, 0,−1)T .

4. B4 = {2, 3} ⇒ AB4 est singulière (non inversible), donc pas de solution,

5. B5 = {2, 4} ⇒ xB5 = A−1
B5

b =

(
2
2

)
, x5 = (0, 2, 0, 2)T .

6. B6 = {3, 4} ⇒ xB6 = A−1
B6

b =

(
6
2

)
, x6 = (0, 0, 6, 2)T .
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• Puisque l’on sait que la solution optimale est l’un des sommets du
polyèdre, l’approche naïve serait de tous les calculer. Mais choisir m
colonnes parmi n quandm et n sont très grands ne serait absolument
pas efficace ! Le nombre de possibilités exploserait.

• Par exemple, en choisissant ne serait-ce que m = 90 (nombre de
contraintes) et n = 40 (nombre d’inconnues), on aboutit déjà à

(n
m

)
≈ 6 ∗ 1025 façons de choisir les colonnes.

• En outre, si Ms n’est pas borné, trouver une solution n’est pas non
plus garanti.

Remarque 9 (Approche naïve)

Dans les paragraphes précédents, la notion de base est apparue. Nous allons for-
maliser cette définition car nous en aurons besoin par la suite.

• Soit x une solution réalisable d’un (LPS), avec A la matrice de m
contraintes. Tout système {aj |j ∈ B} de m colonnes linéairement
indépendantes de A, qui inclut ces colonnes aj telles que xj > 0, est
appelé base de x.

• Soit {aj |j ∈ B} une base de x. L’ensemble d’indices B est ap-
pelé ensemble d’indices de base et l’ensemble d’indices N =
{1, . . . , n}\B est appelé ensemble d’indices hors-base.

• La matrice AB = (aj)j∈B est appelée matrice de la base et la ma-
trice AN = (aj)j∈N est appelée matrice hors-base.

• Le vecteur xB = (xj)j∈B est appelé variable de la base et le vecteur
xN = (xj)j∈N est appelé vecteur hors-base.

Définition 9 (Base et éléments hors-base)

Exemple de construction de la base et des éléments hors-base :

Considérons les contraintes définies par Ax = b, x ≥ 0, avec :

A =

1 4 1 0 0
3 1 0 1 0
1 1 0 0 1

 , b =

24
21
9

 , x =


x1

x2

x3

x4

x5

 .
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Considérons que x = (6, 3, 6, 0, 0)T ∈ Ms est une solution réalisable. Pour ce-

la, les colonnes de A choisies sont :

1
3
1

,

4
1
1

 et

1
0
0

. Les 3 colonnes ont linéai-

rement indépendantes. D’après le théorème 4, il s’agit d’un sommet de l’ensemble
convexe. La base est donc formée par ces 3 vecteurs. On peut écrire :

• B = {1, 2, 3} et N = {4, 5},

• xB = (6, 3, 6)T et xN = (0, 0)T ,

• AB =

1 4 1
3 1 0
1 1 0

 et AN =

0 0
1 0
0 1

.

Maintenant que nous savons claculer un sommet, il faut voir comment nous dé-
placer de sommet en sommet.

Changement de sommet

Dans la plupart des problèmes, cette partie est répétée plusieurs fois. Lidée est de
modifier les ensembles B et N pour calculer un nouveau sommet. En effet, un som-
met du polyèdre est calculé en choisissant des colonnes linéairement indépendantes
deA. Donc si nous choisissons une autre combinaison de colonnes, un autre sommet
sera obtenu (cf. l’exemple sur les calculs des sommets du polyèdre).

Par la suite, nous cherchons à calculer une meilleure solution réalisable x+ de la
base. Les deux ensembles d’indices suivants sont utilisés :

B+ = (B\{p}) ∪ {q}
N+ = (N\{q}) ∪ {p}

Quelles sont les différences par rapport à B et N ? Nous avons un changement
entre les indices p et q. L’indice p sort deB et rentre dansN , alors que l’indice q sort
de N et rentre dans B. Cette procédure s’appelle le changement de base.

Formalisation :

Peut-être vous en doutez-vous, mais le choix des indices p et q n’est pas fait au
hasard (on pourrait, mais cela ressemblerait beaucoup à l’approche naïve). Certains
critères doivent être respectés :

1. Si x est réalisable, x+ doit rester réalisable : Ax = b, x ≥ 0 ⇒ Ax+ =
b, x+ ≥ 0.

2. Pour unemaximisation, la valeur de la fonction-objectif doit augmenter : cTx+ ≥
cTx.
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Les calculs doivent maintenant nous fournir la manière dont cette augmentation
doit être faite, i.e. quels choix formuler surB+ etN+, i.e. quels choix effectuer pour
les pivots p et q. Le principe est illustré par la figure 3.5. On considère un rayon z
partant de x dans une direction s en parcourant une longueur de t :

z(t) = x+ ts, t ≥ 0.

Fig. 3.5 : Idée du changement de base dans la méthode du simplexe. Il faut
trouver la direction s telle que la fonction-objectif croisse le long de cette
direction.

Afin de ne pas surcharger le document, nous omettrons les calculs par la suite. Il
vous faut tout de même chercher à comprendre ce qu’il en est. En effet, sans rentrer
dans les détails, il est possible de choisir la direction s de sorte que seulement la va-
riable hors-base xq soit modifiée sans toucher aux autres composantes (xj)j∈N,j ̸=q

qui restent alors à 0. En choisissant q ainsi, xq quitte les variables hors-base et de-
vient une variable de la base. Le pivot q est déterminé. Nous verrons dans l’exemple
pratique plus loin que si le coût associé à une variable hors-base est positif, alors la
solution de base courante n’est pas encore optimale.

Dans la même idée, une fois le pivot q déterminé, nous pouvons trouver p de
sorte qu’il existe un tmin tel que z(tmin) = x+ soit réalisable, avec xp = 0. De ce
fait, xp quitte les variables de la base et devient une variable hors-base.

D’un point de vue pratique :

Pour le choix du pivot q, le principe consiste à maximiser la fonction-objectif. De
ce fait, choisir une variable hors-base contribuant à ce besoin est de rigueur. Nous
allons donc sélectionner une variable hors-base dont le coefficient dans la fonction-
objectif est positif.

Concernant le pivot p, la conceptualisation est plus délicate, mais possible. La
relation que les solutions réalisables doivent vérifier estAx = b avecx ≥ 0. Soitxq la
variable entrante. L’arrivée de xq va augmenter la valeur de la fonction-objectif. Pour
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que la relation continue à être vérifier, il faut qu’une variable sorte pour réduire la
valeur de la fonction. Afin de savoir laquelle sortir, nous allons augmenter xq jusqu’à
ce que l’une des variables s’annule. La première variable de la base à s’annuler sera
notre variable sortante.

Ax = b ⇔ ABxB + aqxq = b où aq désigne la q-ième colonne de A
⇔ xB = A−1

B (b− aqxq)

⇔ xB = xB −A−1
B aqxq

⇔ xB = xB − rxq

avec r = A−1
B aq ∈ Rm, xB la solution réalisable précédente. Pour que la solution

soit réalisable, il faut que xB ≥ 0, et donc xB − rxq ≥ 0.

Plusieurs cas de figure se présentent alors à nous :

• Si r ≤ 0 (toutes les composantes sont négatives), on peut augmenter xq autant
que l’on veut, on aura toujours la positivité de la variable xB . Le critère n’est
pas majoré, on obtient max f(x) = +∞ : arrêt de l’algorithme.

• Sinon, il existe au moins une composante de r telle que ri > 0. Pour avoir
la positivité (xB)i − rixq ≥ 0 pour tout i, on choisit la variable sortante xp

pour laquelle le rapport (xB)i
ri

pour i = 1, . . . ,m (avec ri > 0) est le plus
petit possible (correspond à trouver la première variable qui s’annulera).

On remarque l’apparition de A−1
B . Afin de pouvoir résoudre le simplexe par ta-

bleaux, nous allons appliquer le pivot de Gauss sur la matrice AB . Ainsi, A−1
B sera

une matrice identité. De ce fait, ri est la ime composante de aq , et (xB)i devient
simplement bi. Le rapport (xB)i

ri
devient finalement bi

aiq
. L’indice du minimum sera

l’indice p.

Critères d’arrêt

Soit c le vecteur de coûts qui évolue tout au long de l’application du simplexe,
constitué initialement des cœfficients de la fonction-objectif. L’arrêt de l’algorithme
dépend de ce vecteur et de la solution réalisable. Plus spécifiquement, cela dépend si
la solution de base réalisable est dégénérée ou non.

On dit qu’un sommet x est dégénéré si l’une de ses composantes est nulle.

Définition 10 (Sommet dégénéré)

1. Si tous les coûts sont négatifs (meilleur cas de figure), alors la solution de base
réalisable courante est l’unique optimum.
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Fig. 3.6 : Optimum unique.

2. Si les coûts sont négatifs ou nuls, deux cas sont à prendre en compte :

(a) Si ce = 0 et xe > 0, alors l’optimum n’est pas unique :

Fig. 3.7 : Optimum non-unique.

(b) Si ce = 0 et xe = 0, alors l’optimum est unique (a priori).
Dans ce cas, la base est dite dégénérée : il existe une variable de base
nulle.

Fig. 3.8 : Optimum à base dégénérée.

3. Si ce > 0 et xe est non-bornée, alors la fonction-objectif n’est pas majorée.
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Si au cours de l’algorithme du simplexe, aucune base rencontrée n’est dégé-
nérée, alors l’algorithme se termine en un nombre fini d’itérations.

Théorème 5

Choix et problèmes calculatoires

Au cours de l’application du simplexe, certains points peuvent être surprenants,
suscitant quelques interrogations de votre côté. Mais rassurez-vous, il y a une solu-
tion à chaque problème ! Énumérons les soucis ou interrogations que vous pourriez
avoir.

1. Si le pivot p ou q n’est pas unique, comment faire notre choix?

Lorsque l’on permute des colonnes, une variable rentre dans la base et une
autre en sort. Dantzig a défini plusieurs critères pour nous aider à répondre à
la question.

• En principe, n’importe quelle composante de xq (avec cq > 0) peut
être choisie comme variable entrante dans la base.

• S’il n’existe pas de pivot q tel que cq > 0, la solution optimale est
trouvée et l’algorithme s’arrête.

• Dans le cas contraire, la stratégie la plus courante est de choisir le
pivot q correspondant à la composante la plus grande du vecteur
de coûts. Ce choix garantit la plus grande croissance de la fonction-
objectif.

Remarque 10 (Premier critère de Dantzig : choix du pivot q)

Comme dit précédemment, à partir du pivot q nous pouvons calculer lemeilleur
choix pour le pivot p.
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Dans la pratique, la stratégie pour choisir le pivot p (et donc la variable
sortant de la base) est de prendre le minimum des rapports bi

aiq
pour i =

1, . . . ,m, avec q la colonne de la variable entrante.

Remarque 11 (Second critère de Dantzig : choix du pivot p)

2. Est-ce-que l’algorithme se termine toujours?

Selon les pivots choisis, il reste possible de voir l’apparition de cycles, notam-
ment dans le cas d’une solution de base réalisable dégénérée. Ce que l’on ap-
pelle cycle est la réapparition des ensembles d’indicesB etN initiaux pendant
une étape du simplexe. Heureusement, ces cycles peuvent être évités grâce à
la règle de Bland.

Lors d’un pivotage, la variable qui entre est celle d’indice minimal parmi
celles qui peuvent rentrer et la variable qui sort est celle d’indice minimal
parmi celles qui peuvent sortir :

(a) Choix de q : q = min{j ∈ N |cj > 0}.

(b) Choix de p : p = min
{
k ∈ B| bk

akq
= min{ bi

aiq
|aik>0,i∈B}

}
.

Définition 11 (Règle de Bland)

3. Bien que le problème soit borné, je n’obtiens pas de solution. Pourquoi ?

Deux cas de figure sont possibles :

(a) Soit les pivots ont été mal choisis.
(b) Soit une erreur s’est glissée dans le pivot de Gauss.

4. Comment démarrer le simplexe ? Faut-il calculer au hasard une solution de
base réalisable?

Non, dans la pratique, vous considérerez que la base ne contient que les va-
riables d’écart. Ainsi, AB sera la matrice identité, et le second membre sera
votre sommet initial. Ce sommet est réalisable, car les colonnes de AB sont
effectivemt linéairement indépendantes.
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Application du simplexe par tableaux

Résolvons le problème suivant :

max f(x1, x2) = 6x1 + 4x2

Soumis à : 3x1 + 9x2 ≤ 81
4x1 + 5x2 ≤ 55
2x1 + x2 ≤ 20
x1, x2 ≥ 0

Le problème est déjà écrit sous forme d’un (LPC). Sous sa forme standard, nous
introduisons les variables d’écart afin d’obtenir des contraintes d’égalité :

max f(x1, x2) = 6x1 + 4x2

Soumis à : 3x1 + 9x2 + e1 = 81
4x1 + 5x2 + e2 = 55
2x1 + x2 + e3 = 20
x1, x2, e1, e2, e3 ≥ 0

L’algorithme du simplexe se déroule ensuite ainsi.

Itération 1

Variables de la base Variables hors-base
e1 e2 e3 x1 x2 b
1 0 0 3 9 81
0 1 0 4 5 55
0 0 1 2 1 20
0 0 0 6 4 f = 0

Tab. 3.1 : Variable entrante : x(1)
e = max (6, 4) = x1. Variable sortante :

min
(
81
3 , 55

4 , 20
2

)
⇒ x

(1)
s = e3.

Itération 2

Après l’étape 1, on remarque que les colonnes de x1 et e3 ont été interverties.

Pour obtenir ce résultat, un pivot de Gauss a été appliqué en prenant comme
pivot l’élément à l’intersection de la colonne de x1 et de la ligne e3. Tous les autres
éléments de la colonne x1 sont alors éliminés.

Rappelons la méthode du pivot de Gauss. Soit ase le pivot (obligatoirement non
nul), cœfficient de la ligne s colonne e :



48 CHAPITRE 3. LA PROGRAMMATION LINÉAIRE

Variables de la base Variables hors-base
e1 e2 x1 e3 x2 b
1 0 0 -3/2 15/2 51
0 1 0 -2 3 15
0 0 1 1/2 1/2 10
0 0 0 -3 1 f = 60

Tab. 3.2 : Variable entrante : x
(2)
e = x2. Variable sortante :

min
(

51
15/2 ,

15
3 , 10

1/2

)
⇒ x

(2)
s = e2.

1. Les éléments de la ligne s sont divisés par le pivot :

a′
sj =

asj

ase
, ∀j et b′s =

bs
ase

.

2. Les éléments des autres lignes (i ̸= s) sont des combinaisons linéaires de
lignes pour annuler le cœfficient dans la même colonne que le pivot :

a′
ij = aij − aiea

′
sj et b′i = bi − aieb

′
s

Ainsi, la solution à chaque itération peut se lire dans la colonne de b.

Itération 3

Variables de la base Variables hors-base
e1 x2 x1 e3 e2 b
1 0 0 7/2 -5/2 27/2
0 1 0 -2/3 1/3 5
0 0 1 5/6 -1/6 15/2
0 0 0 -11/3 -1/3 f = 65

Tab. 3.3 : Tous les coûts réduits sont négatifs. L’optimum est atteint avec
f = 65.

Au final, la solution rélisable optimale est obtenu en résolvant un système si-
milaire à ABxB = b. En appliquant le pivot de Gauss, nous avons transformé le
système de sorte à isoler xB en faisant apparaîtr eune matrice identité. La solution
optimale s’obient en lisant tout simplement la colonne correspondant au vecteur b :



3.4. RÉSOLUTION D’UN PROBLÈME LINÉAIRE 49


e∗1 = 27/2
x∗
1 = 15/2

x∗
2 = 5

e∗2 = 0
e∗3 = 0

L’optimum de la fonction-objectif est : f(x∗
1, x

∗
2) = 6x∗

1 +4x∗
2 = 6 ∗ 15/2+4 ∗

5 = 65.
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Chapitre 4
Optimisation discrète

En optimisation discrète, certaines variables du modèle appartiennent à un en-
semble discret. Dans ce chapitre, deux domaines de l’optimisation discrète sont pré-
sentées : la programmation en nombres entiers, et l’optimisation combinatoire.

4.1 Programmation en nombres entiers
4.1.1 Principe général

Dans un programme en nombres entiers - aussi appelé (PLNE) - les fonctions-
objectif et les contraintes sont toujours linéaires, mais une partie ou toutes les va-
riables sont des entiers. La programmation en nombres entiers a l’avantage d’être
plus réaliste que les problèmes de programmation linéaire sans la contrainte d’inté-
grité, mais ont le désavantage d’être plus difficile à résoudre. La méthode usuellement
employée consiste à résoudre une série de (LP) associés (le (PLNE) où la contrainte
d’intégrité est relaxée) issue de la recherche d’une solution entière.

Dans un programme en nombres entiers linéaire, nous cherchons à optimiser
une fonction linéaire soumise à un ensemble de contraintes linéaires et d’intégrité
sur un espace n-dimensionnel :

max cTx
Soumis à : Ax = b

x ≥ 0
x ∈ Zn

Si seulement certaines composantes de x appartiennent à Z, alors le problème
est un problème linéaire en nombres entiers mixte. Si toutes les variables prennent
les valeurs 0 ou 1, alors il s’agit d’un problème d’optimisation binaire.

51
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Les problèmes de gestion de stock comme celui du Sac à dos rentrent clairement
dans cette catégorie. Par contre, il est important de remarquer qu’il ne s’agit plus
d’un simple problème linéaire, puisque l’ensemble de solutions admissibles n’est plus
représenté par un polyèdre mais par un ensemble discret de points. Il faut ajouter la
contrainte d’intégrité. Dans ce cas, comment déterminer l’optimum?Quatre familles
de méthodes répondent à la question :

1. Les méthodes de recherches arborescentes : Branch and Bound, algorithme de
Little pour le problème du voyageur de commerce, de Dakin pour les (PLNE).

2. Les Méthodes de Coupe : aussi appelées méthodes de troncature, comme la
troncature de Gomory.

3. La programmation dynamique : pour les problèmes de plus court chemin ou
de sac à dos.

4. Les méthodes approchées : algorithme tabou, recuit simulé, algorithme géné-
tique, colonie de fourmis.

4.1.2 Résolution par le Branch and Bound
Nous n’avons évidemment pas le temps de tout présenter. Nous avons opté par

la suite par une explication de la méthode du Branch and Bound.

Principe général

Comme son nom l’indique, la procédure se découpe en deux étapes : la sépara-
tion et l’évaluation. C’est le principe du Diviser pour régner. Les bornes sur le coût
optimal vont être utilisées pour éviter d’explorer certaines parties de l’ensemble des
solutions admissibles.

Les deux étapes sont :

• La séparation - L’ensemble des solutions admissibles d’un problème F est
partitionné en une collection finie de sous-ensembles {Fi}. Chaque problème
est ensuite résolu séparément.

• L’évaluation - Pour chaque sous-problème, une borne inférieure est calcu-
lée sur le coût optimal du (LP) associé. En effet, la relaxation linéaire est em-
ployée. Si la solution d’un sous-problème est entière, le partitionnement est
inutile. Sinon, deux sous-problèmes sont créés en ajoutant comme contraintes
les bornes supérieure et inférieure de la solution non-entière.
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Exemple

max f(x1, x2) = 10x1 + 50x2

Soumis à : −x1 + 2x2 ≤ 5
x1 + 2x2 ≤ 14
x1 ≤ 8
x1, x2 ≥ 0
x1, x2 ∈ Z

Fig. 4.1 : Étape 1. Résolution du PL. La solution optimale est calculée.

Fig. 4.2 : Étape 2. Séparation en deux sous-problèmes.

Fig. 4.3 : Étape 3. Seconde séparation en sous-problèmes. Aucune solution
admissible pour P4.
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Fig. 4.4 : Étape 4. Solution optimale trouvée en P3.
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Annexe A
Consignes de travail

Texte repris du livret APP0 de l’École Polytechnique de Louvain [1].

A.1 Travailler en groupe
La formation se fait sous la forme d’APP (apprentissage par problèmes). Une des

caractéristiques de cette méthode est d’optimiser la participation active de chaque
étudiant. Individuellement, chacun d’entre vous contribue selon son style et ses res-
sources à la progression efficace de la rencontre et au climat constructif des échanges.
De plus, pour faciliter le déroulement d’un tutorial, il est conseillé aux étudiants de
remplir 3 rôles spécifiques :

Animateur

• S’assure que le groupe suit les étapes prévues,

• Veille à ce que le contenu de la discussion soit noté par le secrétaire,

• Anime la discussion :

– distribue la parole, suscite/sollicite la participation ou modère les inter-
ventions,

– amène le groupe à clarifier les idées développées,

– réalise des synthèses au besoin ;

• S’assure du respect du timing : informe le groupe régulièrement (« il nous reste
30 minutes pour cette séance»…)
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Scribe

• Note au tableau l’essentiel des échanges (support et mémoire de la discussion
du groupe),

• Ne filtre pas les informations notées,

• Organise le tableau en fonction des étapes (de manière à garder la trace de
toute la réflexion → ne pas effacer).

Secrétaire

• Garde une trace écrite et complète de la production du groupe,

• Transmet cette trace à tous les membres du groupe et au tuteur.

Lors des séances, l’enseignant fait office de tuteur :

• Il ne fait pas partie du groupe d’apprenants,

• Il guide le groupe :

– l’empêche de s’égarer !
– l’incite à aller plus loin…

• Il n’est pas là pour vous donner un cours (si c’était le cas, vous seriez tous
regroupés en auditoire),

• Il connait la réponse au problème mais c’est à vous, étudiants, de faire le tra-
vail. Vous ne serez donc pas étonné qu’il refuse parfois de répondre directe-
ment aux questions que vous vous posez. Ce sera le cas notamment s’il estime
que cette question n’a pas été débattue préalablement au sein du groupe.

A.2 Travail individuel
Pourquoi faire du travail individuel ?

• Le vrai but est que tout le monde apprenne, pas uniquement que le problème
soit bien résolu !

• Ce n’est pas le groupe qui doit devenir compétent mais bien chacun de ses
membres !

• Le travail collectif est certes important mais l’APP vise à rendre chaque étu-
diant compétent.

• C’est la raison pour laquelle chaque APP fait l’objet d’une évaluation indivi-
duelle. Le travail réalisé entre les séances de groupe est la manière la plus effi-
cace et la plus simple de se préparer à cette évaluation. Avant la fin de chaque
problème, chaque étudiant sera amené à présenter sa solution individuelle aux
autres membres du groupe.
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Qualité des échanges

Fig. A.1 : Étoile d’évaluation

A.3 Évaluation du travail en groupe (question-
naire)

A.3.1 Les axes (quelques critères d’évaluation)
Indiquez sur chacun des 6 axes figurant sur l’étoile (figure A.1) votre niveau d’ap-

préciation générale entre 0 (« très insatisfaisant ») et 4 (« très satisfaisant »). Ensuite,
reliez les points.

Production du groupe. Le groupe a produit quelque chose de satisfaisant et cette
production est réellement le résultat d’un effort collectif.

Implication et expression de chacun. Chacun des participants a contribué dema-
nière significative à l’efficacité du groupe, le groupe a donné l’occasion à cha-
cun de ses membres d’exprimer son point de vue, les participants en retrait
ont été sollicités.

Qualité des échanges. Il y eu suffisamment d’interactions entres les différentsmembres
du groupe, ces échanges ont permis de faire émerger des points de vue dif-
férents pour traiter le problème, les temps de mises en commun ont permis
à chacun de confronter sa compréhension du problème et des notions tra-
vaillées…
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Réalisation du travail individuel convenu. Les membres du groupe ont fait leur
part de travail individuel entre les séances, tous les membres du groupe ont
mené à bien leurs responsabilités…

Organisation du travail. Le groupe est parvenu à coordonner ses activités, les réunions
étaient efficaces, le groupe est resté centré sur la tâche à accomplir, le groupe a
fait suffisamment usage du tableau, le groupe s’est réparti des rôles : un secré-
taire a gardé des traces des échanges, un animateur a joué son rôle, le timing
a été respecté…

Ambiance dans le groupe, climat de travail. Bonne entente entre les membres
du groupe, les participants s’aident et s’encouragent mutuellement, le groupe
est arrivé à surmonter ses divergences de vue, personne n’est arrivé à imposer
son point de vue…

A.3.2 Questions ouvertes
1. Déterminez deux points qui ont bien fonctionné pour le travail en groupe

2. Déterminez deux points qui ont mal fonctionné pour le travail en groupe

3. Quelles sont les leçons à tirer de cette expérience? Si c’était à refaire, que
feriez-vous – quel engagement prendriez-vous – pour que cela fonctionne
mieux? Pensez aux travaux de groupe qui se présenteront prochainement du-
rant votre formation.

4. Êtes-vous satisfait des connaissances ou des compétences acquises lors de la
résolution de ce problème? Commentaires à propos de ce que vous avez appris
en informatique.

5. Autres commentaires et suggestions à propos de ce problème.



Annexe B
Problème 1 : Optimisation de
production de gâteaux

Votre équipe va confectionner des gâteaux pour la fête annuelle de l’école. On
dispose de trois recettes de gâteaux qui seront réalisés, et d’un stock d’ingrédients.
Combien de gâteaux de chaque doit-on préparer pour réaliser le plus de gâteaux au
total ?

On dispose en tout de 3 kg de farine, 2 kg de beurre, 3 kg de sucre, 60 œufs, 1 kg
de chocolat, 15 citrons et 30 sachets de levure.

Voici les trois recettes :

Moelleux au chocolat Moelleux au citron Tarte au citron

Préparation : 10min Préparation : 15min Préparation : 30min
Cuisson : 35min Cuisson : 25min Cuisson : 25min

125 g de farine 180 g de farine 200 g de farine
125 g de beurre 120 g de beurre 90 g de beurre
250 g de sucre 200 g de sucre 250 g de sucre
4 œufs 6 œufs 4 œufs
200 g de chocolat 1 citron 1/2 3 citrons
1/2 sachet de levure 1 sachet de levure
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B.1 Travail demandé
B.1.1 Préparation

Il ne vous est pas demandé de résoudre le problème, mais de le modéliser. Pour
cela, vous devez tout d’abord déterminer les variables du problème (que vous pouvez
nommer comme vous le souhaitez), et le domaine de chacune d’elles. Un domaine
peut être l’ensemble des entiers naturels N, des entiers Z, des réels R, un intervalle
(e.g., [0..10]) d’entiers ou de réels, un intervalle semi-ouvert (e.g., [1..∞]) d’entiers
ou de réels, ou encore un ensemble de valeurs (e.g., {10, 15, 20}).

Ensuite, déterminez s’il s’agit d’un problème de décision ou d’optimisation. S’il
s’agit d’un problème d’optimisation, il faut déterminer une expression numérique à
maximiser ou à minimiser (e.g., maximiser (x+ y), minimiser (|x− y|), etc.)

Enfin, déterminez les contraintes de problème. Ici, une contrainte peut être n’im-
porte quelle expression booléenne mettant en jeu une ou plusieurs variables (e.g.,
x+ y ≤ 10, x ̸= y, x× y = 2, |x− y|+ z2 > 20, etc.)

S’il vous reste du temps, regardez les variantes dans la section suivante.

B.1.2 Réalisation
Réécrivez votre modèle à l’aide du langage MiniZinc et utilisez un des solveurs

fournis pour le résoudre.

B.2 Avec les courses
On reprend le problème précédent, les questions sont les mêmes mais on ne dis-

pose pas du stock d’ingrédients. On dispose de 150 € pour faire les courses. On ne peut
acheter que des portions entières d’un ingrédient (par exemple la farine s’achète par
kilogrammes) ! Voici le prix des ingrédients :

Farine : 0,44 €/kg

Beurre : 2,44 € pour une plaquette de 500 g

Sucre : 0,89 €/kg

Œufs : 1,85 € les 12 ou 0,99 € les 6

Chocolat : 1,29 € la plaquette de 200 g

Citrons : 1,49 € les 4

Levure : 0,20 € les 6 sachets

On peut imaginer d’autres extensions au problème :

• prendre en compte un stock existant (e.g., il reste 3 kg de farine de la dernière
vente),
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• on va vendre le moelleux au chocolat à 3,70 € la part, le moelleux au citron à
3,10 € la part et la tarte à 3,20 € la part (les gâteaux font tous 6 parts), on veut
maintenant maximiser le profit,

• prendre en compte le temps de préparation et de cuisson des gâteaux : on ne
dispose que de 6 h à trois personnes, dont une seule qui sait faire la tarte au
citron, et deux fours (il faudra peut-être ajuster les prix de vente en consé-
quence),

• on veut imposer une variété dans les préparations (maximum 50% d’écart
entre deux types de gâteaux),

• etc.

Testez chacune de ces variantes. Pouvez-vous réaliser un modèle commun, en
permettant de paramétrer à part le stock, le prix des ingrédients ? Les recettes? Es-
sayez d’augmenter fortement le budget : quel est l’impact sur le temps de calcul ?
Essayez d’ajouter ou supprimer une recette : quel est l’impact ?
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Annexe C
Problème 2 : Création
d’emplois du temps

Votre objectif est de construire un emploi du temps pour une semaine d’ensei-
gnement dans un collège miniature, disposant d’une classe par niveau (de la 6ᵉ à la
3ᵉ).

Chaque classe suit des cours, par séances d’1 h 30. Les séances ont lieu de 9 h à
10 h 30 et de 11 h à 12 h 30 du lundi au samedi inclus, ainsi qu’une séance de 14 h à
15 h 30 les lundi, mardi, jeudi et vendredi, soit 16 séances par semaine au maximum
pour chaque classe. Voici la répartition :

Pour les 6ᵉ et les 5ᵉ :

• Français : 4 séances par semaine

• Anglais : 3 séances par semaine

• Mathématiques : 3 séances par semaine

• Arts : 2 séances par semaine

• Sport : 2 séances par semaine

Pour les 4ᵉ et les 3ᵉ :

• Français : 4 séances par semaine

• Anglais : 3 séances par semaine

• Mathématiques : 3 séances par semaine
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• Sciences : 2 séances par semaine

• Arts : 2 séance par semaine

• Sport : 2 séances par semaine

Chaque matière n’est enseignée que par un seul enseignant. Le collège dispose
de cinq salles.

Proposez un modèle pour réaliser l’emploi du temps : organisez les séances de
cours en associant une classe avec un enseignant et une salle à un horaire donné.

Extensions
Essayez d’ajouter les paramètres suivants au modèle (dans le désordre) :

• On ne propose pas deux cours identiques la même journée,

• Les cours de sciences ne peuvent avoir lieu que dans une salle spécifiquement
équipée,

• Le sport se fait uniquement sur le terrain de football du collège (que l’on consi-
dère comme une salle spécifique, où aucun autre cours ne peut avoir lieu),

• Les enseignants d’anglais et d’arts sont à temps partiel et n’enseignent pas le
mercredi,

• Comme les 6ᵉ et les 5ᵉ n’ont que 14 séances de cours, on voudrait libérer leur
samedi matin,

• Pouvez-vous également éliminer les « trous» dans les emplois du temps des
enseigants ? Limiter le nombre de jours de présence de chaque enseignant?

• Peut-on développer le collège en doublant le nombre de classes? Faut-il ajou-
ter des enseignants, des salles ?



Annexe D
Problème 3 : Un étudiant de
l’IUT de Maubeuge au
supermarché. Problèmes
nutritionnels en perspective?

D.1 Sujet
Tout le monde le sait, l’arrivée à l’âge adulte conduit inexorablement à aller faire

ses courses sans maman. Cependant, votre santé n’en a que faire de votre nouvelle li-
berté, requérant un certain apport nutritionnel à chaque repas. L’objectif du problème
de rationnement consiste à sélectionner un ensemble d’aliments satisfaisant les Ap-
ports Journaliers Recommandés à un coût minimum. Les contraintes du problème
ne prennent évidemment pas en compte l’intégralité des nutriments existants, mais
le principe reste identique. Il vous faudra composer un menu à moindre coût, dans
lequel le nombre de calories et l’ensemble des nutriments seront présents en quantité
satisfaisante. Vous vous servirez des données fournies dans l’annexe.

D.2 Préparation
Votre travail de préparation consiste à formuler mathématiquement le problème :

1. identifiez les variables du problème,

2. définissez la fonction-objectif,

3. formulez les contraintes à satisfaire,
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4. mettez la formulation sous forme matricielle.

Descriptif des contraintes : pour bien fonctionner, un corps humain doit disposer
d’assez d’énergie, mais a contrario ne peut assimiler une ration de calories supérieure
à un seuil sous peine d’augmenter sa masse adipeuse. Le principe est identique pour
les nutriments : au-delà d’une certaines dose, même les vitamines peuvent se révéler
toxiques.

1. Tout d’abord, vous assimilerez la méthode du simplexe en l’appliquant sur ce
problème en considérant :

• Parmi les aliments : chips, pizza, céréales ;
• Parmi les contraintes : calories, vitamine A.

Quelle solution obtenez-vous (rations et coût) ?

2. Vous vous rendez compte en faisant vos courses que vous ne pourrez pas for-
cément tout stocker. Modifiez le modèle en tenant compte du fait que vous ne
pouvez stocker plus de 5 exemplaires de chaque aliment.

3. Cette fois-ci, toutes les contraintes et les aliments à votre disposition sont à
considérer. Adaptez votre formulation pour en tenir compte.

4. Jusqu’à présent, vous avez optimisé le coût, ce qui peut sembler raisonnable
du point de vue du portefeuille, mais mauvais pour votre santé. Proposez une
fonction permettant d’améliorer votre menu en diversifiant au maximum les
produits.

D.3 Réalisation individuelle
Reprenez les formulationsmathématiques des questions précédentes, et implémentez-

les avec Minizinc, puis Scilab. Quels régimes obtenez-vous? Pour quels coûts ?

D.4 Annexe
Dans ses toolboxes, Scilab fournit différentes méthodes d’optimisation. Celles qui

nous intéressent ici concerne les problèmes d’optimisation linéaire et quadratique.
Les fonction linpro et quapro nous aideront dans la résolution. Pour connaître le pro-
totype de la fonction linpro par exemple, écrivez dans la consolehelp('linpro').
Si lemodule n’est pas installé, lancez dans la console Scilab :atomsInstall('linpro').
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Unité Minimum Maximum
Calories cal 2 000 2 500

Cholesterol mg 0 300
Matière grasse g 40 90

Protéine g 50 100
Vitamine A UI 2 000 50 000
Vitamine C UI 50 20 000

Calcium mg 800 1 600
Fer mg 10 30

Tab. D.1 : Apports nutritionnels

Coût par ration
Brocolis 0,16

Carottes rapées 0,07
Salade 0,02

Pommes de terre 0,06
Poulet 0,84

Bananes 0,15
Raisins 0,32

Oranges 0,15
Pain 0,06

Beurre 0,05
Camembert 0,25

Bœuf 0,27
Jambon 0,33
Céréales 0,28

Pizza 0,44
Couscous 0,39
Riz blanc 0,08

Côtelettes de porc 0,81
Sardines à l’huile 0,45

Chips 0,19
Yaourts 0,20

Haricots verts 0,75

Tab. D.2 : Coût et capacité de stockage des aliments
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Calories Cholesterol Matière grasse Protéine Vitamine A Vitamine C Calcium Fer
Brocolis 73,8 0,0 0,8 8,0 5 867,4 160,2 159,0 2,3

Carottes râpées 23,7 0,0 0,1 0,6 15 471,0 5,1 14,9 0,3
Salade 2,6 0,0 0,0 0,2 66,0 0,8 3,8 0,1

Pommes de terre 171,5 0,0 0,2 3,7 0,0 15,6 22,7 4,3
Poulet 277,4 129,9 10,8 42,2 77,4 0,0 21,9 1,8

Bananes 104,9 0,0 0,5 1,2 92,3 10,4 6,8 0,4
Raisins 15,1 0,0 0,1 0,2 24,0 1,0 3,4 0,1

Oranges 61,6 0,0 0,2 1,2 268,6 69,7 52,4 0,1
Pain 65,0 0,0 1,0 2,3 0,0 0,0 26,2 0,8

Beurre 725,0 250,0 83,0 0,7 2 499,0 0,0 15,0 0,1
Camembert 112,7 29,4 9,3 7,0 296,5 0,0 202,0 0,2

Boeuf 141,8 27,4 12,8 5,4 0,0 10,8 9,0 0,6
Jambon 37,1 13,3 1,4 5,5 0,0 7,4 2,0 0,2
Céréales 110,5 0,0 0,1 2,3 1 252,2 15,1 0,9 1,8

Pizza 181,0 14,2 7,0 10,1 281,9 1,6 64,6 0,9
Couscous 100,8 0,0 0,1 3,4 0,0 0,0 7,2 0,3
Riz blanc 102,7 0,0 0,0 0,3 2,1 0,0 0,0 7,9
Côtelettes 710,8 105,1 72,2 13,8 14,7 0,0 59,9 0,4
Sardines 49,9 34,1 2,7 5,9 53,8 0,0 91,7 0,7

Chips 139,2 0,0 9,2 2,2 61,5 9,6 14,2 0,5
Yaourts 70,0 5,0 3,5 4,1 4,0 0,0 151,0 0,1

Haricots verts 31,0 0,0 0,1 1,8 108,0 24,3 307,0 1,0

Tab. D.3 : Information nutritionnelle par aliment



Annexe E
Problème 4 : Location de sites

E.1 Sujet
Considérons un autre problème bien connu de l’optimisation combinatoire : l’étude

d’emplacement de sites. Une entreprise d’informatique possède 4 usines qui produisent
des cartes-mères. La compagnie fonctionnant bien, elle aimerait aller plus loin en
concevant dorénavant son propre ordinateur. Le tableau E.1 ci-dessous contient : les
coûts fixes, variables, et les capacités hebdomadaires pour chaque site, ainsi que les
productions hebdomadaires de chaque usine. Les coûts variables sont en euros par
semaine, et incluent les frais de transport. Les coûts fixes sont en euros par an. Les
quantités de production et de capacité sont en tonnes par semaine.

Vous devez faire face à deux problèmes distincts :

• combien de tonnes de matériel chaque usine doit envoyer à chaque site par
semaine?

• chaque site a-t-il son utilité ?

L’objectif est clair : minimiser les coûts. La première question correspond aux
problèmes de programmation linéaire à variables continues que vous avez déjà ren-
contré. La seconde fait intervenir des variables entières, d’où l’appelation de pro-
grammation linéaire en nombres entiers.

E.2 Préparation
Votre travail de préparation consiste à formuler mathématiquement le problème :

1. identifiez les variables du problème,

2. définissez la fonction-objectif,
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Site 1 Site 2 Site 3 Production
Coûts variables – Usine 1 25 20 15 1 000
Coûts variables – Usine 2 15 25 20 1 000
Coûts variables – Usine 3 20 15 25 500
Coûts variables – Usine 4 25 15 15 500

Coûts fixes 500 000 500 000 500 000
Capacité 1 500 1 500 1 500

Tab. E.1 : Données sur les capacités et les coûts des sites

3. formulez les contraintes à satisfaire,

4. mettez la formulation sous forme matricielle.

Descriptif des contraintes : chaque usine est sujette à une certaine production. Cette
production devra bien aller quelque part. En outre, il faut prendre en compte la possibilité
qu’un site soit ou non ouvert.

1. Tout d’abord, appliquez la méthode du simplexe pour résoudre ce problème.
Vous relaxerez la contrainte d’intégritté, obtenant de ce fait un problème li-
néaire (PL) et répondrez aux questions ci-dessous. On considère que la pro-
duction arrivant sur un site ne provient que d’une seule usine.

(a) Quel est la valeur de la fonction-objectif et quels sites doivent être construits ?
(b) Cette solution est-elle directement utilisable comme solution optimale

pour le PLNE?

2. L’idée consiste à appliquer un Branch & Bound pour trouver la solution entière
optimale. Tout d’abord, entraînez-vous en cherchant la solution optimale en-
tière sur le problème indépendant suivant :

max f(x1, x2) = 5 · x1 + 4 · x2

Soumis à x1 + x2 ≤ 5
10 · x1 + 6 · x2 ≤ 45
x1, x2 ≥ 0

Vous pourrez vous appuyez sur un graphique pour trouver la solution du pro-
gramme linéaire et éliminer les branches n’apportant pas de solution.

3. Considérons un PLNE et son PL obtenu en relâchant la contrainte d’intégrité.
Répondez par VRAI ou FAUX aux questions suivantes en justifiant par du texte
ou un graphique :

(a) Si le PLNE est un problème de minimisation, la valeur de la fonction-
objectif est supérieure ou égale à la valeur de la fonction-objectif du PL.
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(b) Si le PL est insatisfaisable, le PLNE aussi.
(c) Si toutes les variables du PL sont des entiers, il s’agit de la solution op-

timale du PLNE.

4. Dans cette question, vous allez chercher la solution du PLNE du problème ini-
tial en vous appuyant sur la programmation par contraintes. Vousminimiserez
tout d’abord le nombre de sites ouverts, puis les coûts engendrés (Généralisez
le programme pour pouvoir modifier aisément le nombre de sites, d’usines et
les coûts).

(a) Comment évolue le coût?
(b) Quels sites doivent être construits dans ce cas?

E.3 Réalisation individuelle
• L’ensemble des formulations prédédemment établies sont à implémenter avec

Scilab. Donnez les valeurs des coûts et des variables dans chaque cas.

• L’algorithme du Branch & Bound n’existe pas par défaut dans Scilab. Utilisez
la programmation par contraintes avec Minizinc pour répondre à la question
du PLNE. Vérifiez vos résultats obtenus par le calcul.

E.4 Annexe
Dans ses toolboxes, Scilab fournit différentes méthodes d’optimisation. Celle qui

nous intéresse ici concerne les problèmes d’optimisation linéaire. La fonction linpro
nous aidera dans la résolution. Pour connaître le prototype de la fonction, écrivez
dans la console help('linpro').
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