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Introduction

Ce cours se veut étre un manuel de référence que vous devrez avoir systémati-
quement et obligatoirement sur vous lors de toutes les séances d’apprentissage
et d’évaluation. Vous irez y piocher les informations dont vous aurez besoin pour
résoudre les problémes auxquels vous serez confrontés. Contrairement a un cours
habituel, ne vous attendez pas a une présentation systématique du contenu de ce li-
vret lors des séances de cours. L’ensemble des notions expliquées ici devront étre
progressivement mises en ceuvre lors de la résolution de chaque probleme.

Ce livret n’est pas exhaustif. N’hésitez pas a consulter les documents listés dans
la section bibliographique si vous avez besoin de plus d’informations.

Programme
Ce cours correspond au module Introduction a la recherche opérationnelle et aide

a la décision (M4202C) du Programme Pédagogique National du DUT Informatique
[3]. L’objectif est de vous former aux compétences suivantes :

Objectif du module :

« Connaitre P'existence d’outils de base pour aider la décision : programmation
linéaire, etc.;

« Comprendre le fonctionnement et les limitations de ces méthodes.

Compétences visées :

+ Modéliser une situation complexe a 'aide d’un graphe ou de variables corré-
lées;

«+ Prendre une décision raisonnée en optimisant un ou plusieurs critéres.
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Contenus :

+ Programmation linéaire;
« optimisation discréte;

« méthodes arborescentes.

Modalités de mise en ceuvre :

Pour la mise en ceuvre pratique de ce module, nous nous appuierons sur le lan-
gage MiniZinc, qui inclut un solveur de problémes de satisfaction et optimisation de
contraintes simple.

Organisation des séances

La formation est organisée sous forme de problémes sur lesquels vous travaillerez
lors des séances de TD et TP. L’ensemble des sujets des problémes que vous aurez
a résoudre au cours de la formation se trouve en annexe de ce document. Générale-
ment, la résolution d’un probléme suivra le schéma suivant :

1. Séance de TD (1 heure 30) : étude du sujet en groupe de 3 ou 4. Préparation
d’une solution.

2. Séance de TP (3 heures) : réalisation individuelle de la solution élaborée lors
de la séance de groupe.

3. Séance de TD (1 heure 30) :

« présentation du travail réalisé par un groupe,
« correction du probléme,

« exercices d’application complémentaires.
4. Séance de cours (1 heure 30) :

« restructuration et réponse aux questions;

« éventuellement une évaluation individuelle.

Soit 7 heures 30 en séance par probléme. Entre chaque séance : travail auto-
nome (non encadré), individuel et/ou en groupe, pour compléter les préparations et
travaux non terminés (les évaluations sont faites en considérant que les problemes
sont entiérement résolus) et acquérir les connaissances nécessaires a la résolution
des problémes (normalement d’aprés ce livret).

L’annexe A de ce livret donne des indications sur les méthodes de travail. Consultez-
la avant le début du premier probléme.
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Chapitre

Optimisation combinatoire et
recherche opérationnelle :
comment, pourquoi?

De nombreux problémes, industriels ou quotidiens, nécessitent de réaliser des
décisions difficiles ou d’optimiser : réaliser un emploi du temps, ordonnancement
des taches dans un atelier (scheduling), trouver le plus court chemin d’un point a un
autre (planning), stocker des objets dans des containers (bin packing), allocation de
fréquences pour les réseaux mobiles, routage dans les réseaux, dans les aéroports,
réaliser des intelligences artificielles, décrypter un message codé, etc...

En général, tous ces problémes peuvent étre décomposés en variables, souvent
des nombres entiers. Un probléme de décision consiste a trouver une solution, c’est-
a-dire a affecter une valeur a chaque variable. Un probléme d’optimisation consiste
a trouver la meilleure solution, suivant un critere donné, par exemple la solution la
moins couteuse, la moins risquée, prenant le moins de temps, etc., voire une combi-
naison de critéres.

La recherche opérationnelle (et dans une certaine mesure U'intelligence artificielle)
est le domaine scientifique qui s’intéresse a ce genre de probléme. Les problemes
d’optimisation sont étudiés par les mathématiciens dés le XVIII® siecle, mais c’est
au cours de la seconde guerre mondiale qu’elle trouve de premiéres applications
concreétes dans la planification des opérations militaires (d’ott son nom). A partir des
années 1950, la discipline commence a s’imposer dans les milieux industriels et aca-
démiques, mais c’est surtout dans les années 1990 que la performance des ordinateurs
permet de résoudre des problémes industriels de taille raisonnable. Aujourd’hui, la
recherche opérationnelle et I'intelligence artificielle sont des disciplines académiques
trés complétes, faisant intervenir des notions de mathématiques appliquées, d’infor-
matique, d’économie, d’ingéniérie, de statistiques, etc.
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1.1 Quelques exemples

1.1.1 Appariements de colocataires

On souhaite apparier quatre personnes A, B, C et D pour une colocation (dans
deux appartements de deux places chacun). Chacune des quatre personnes a des af-
finités, pas toujours réciproques, avec chacune des trois autres. Ces affinités seront
représentées par une note allant de 0 (aucune affinité) a 10 (trés forte affinité). L’ob-
jectif est de trouver un appariement qui va maximiser la somme des affinités.

Voici les affinités sous forme de matrice :

A B C D
A 6 10
B 3 7 2
c 3 9 4
D 7 8 4

Une solution a ce probléme serait d’apparier A avec B et C avec D. La somme des
affinités est alors de 0 (affinité de A avec B) + 3 (affinité de B avec A) +4 + 4 = 11.
Est-ce la meilleure solution?

On peut aussi fixer une affinité minimum, et trouver un appariement qui va satis-
faire ce minimum. On peut alors chercher a trouver le plus grand minimum possible.
La solution précédente a pour minimum I'affinité de A avec B, soit 0. Peut-on trouver
une solution avec un meilleur minimum ?

Ce genre de probleme est appelé un probléme combinatoire parce que 'on est ten-
té, pour le résoudre, de tester toutes les combinaisons d’appariements jusqu’a trouver
la meilleure solution. Et le nombre de combinaisons augmente trés vite ! Dans les an-
nées 1960, une université américaine souhaitait résoudre ce probléme pour plus de
21000 étudiants. Avec 22 personnes, il y a déja plusieurs milliards de combinaisons
a évaluer. Une telle progression, dite exponentielle, dépasse de loin les capacités de
calcul des ordinateurs les plus puissants : les temps de calculs se compteraient en mil-
lénaires... Cependant, il n’est peut-étre pas nécessaire de tester toutes les solutions
pour répondre au probléme...

1.1.2 Coloration de carte

Un probléme tres classique en optimisation combinatoire est la coloration de
cartes.

Le principe consiste, comme dans 'exemple ci-dessus, a affecter une couleur a
chaque région d’une carte, de sorte que deux régions adjacentes aient deux couleurs
différentes. Il faut également trouver le nombre minimal de couleurs nécessaire pour
optimiser la solution.

Pour résoudre ce probléme, on représente la carte par un graphe, dont la parti-
cularité est de pouvoir étre tracé sans croiser les arcs : on parle de graphe planaire.
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F1G. 1.1 : Carte de France a colorier : combien de couleurs au minimum ?

Dans ce cas, on a démontré en 1976 qu’on pouvait toujours colorer une carte avec
quatre couleurs seulement, mais la démonstration a résisté longtemps a la commu-
nauté des mathématiciens, depuis sa formulation au milieu du XIX® siécle jusqu’a sa
preuve. Pour I'anecdote, c’est la premiére preuve qui avait nécessité 'emploi d’'un
algorithme programmé, dans la mesure ou la démonstration requiérait une décom-
position en 1478 cas particuliers (on a trouvé de meilleures preuves depuis).

1.1.3 Probléme du voyageur de commerce

Un voyageur de commerce doit visiter n villes en passant par chaque ville exac-
tement une fois. Il commence par une ville quelconque et finit sa tournée a la ville
de départ. Sachant que les distances entre les villes sont connues, quel chemin faut-
il choisir afin de minimiser la distance parcourue? La notion de distance peut-étre
remplacée par d’autres notions comme le temps qu’il met ou 'argent qu’il dépense.
En termes mathématiques, 'objectif est de trouver un cycle hamiltonien (c’est-a-dire
passant par chaque sommet) de coit minimal.

Ce probléme est un représentant de la classe des problemes NP-complets. L’exis-
tence d’un algorithme de complexité polynomiale reste inconnue. Pour 15 villes, il
existe 43 milliards de possibilités. Temps de résolution : 12h! Les algorithmes pour
résoudre ce type de problémes peuvent étre répartis en deux classes :

1. Les algorithmes déterministes qui trouvent la solution optimale.

2. Les algorithmes d’approximation qui fournissent une solution presque opti-
male.
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1.2 Probléme de satisfaisabilité

Etant donné un ensemble de régles logiques (c’est-a-dire une grosse formule boo-
léenne pouvant comporter les opérateurs NON, ET et OU), ce probléme consiste a dé-
cider s’il existe une assignation de valeurs aux variables qui renvoie la valeur VRAIL
Il est toujours possible de réécrire ces problemes sous forme d’une conjonction de
disjonctions (appelées clauses). Cette réécriture permet de considérer chaque clause
comme une contrainte au probleme. Souvent, une telle assignation n’existe pas. Dans
ce cas, il est naturel de chercher une assignation satisfaisant un nombre maximal de
contraintes.

Un exemple de probléme de satisfaisabilité est connu sous le nom de probléme
SAT, dont I'objectif est de vérifier si une formule propositionnelle est satisfaisable ou
non. Cette modélisation a baucoup d’applications au niveau de la CAO, des bases de
données, ou de la vision par ordinateurs.

1.3 Probleme du plus court chemin

Vous avez déja rencontré ce type de problemes en théorie des graphes. La re-
cherche d’un plus court chemin dans un graphe valué peut se faire entre deux som-
mets, d’'un sommet a tous les autres, ou entre tous les couples de sommets. L’objectif
est évidemment de minimiser le cotit. Ce type de problémes se rencontre en Optimi-
sation dans les réseaux.

De nombreux algorithmes existent en fonction des caractéristiques du graphe :

e L’algorithme de Dijkstra s’utilise dans un graphe ou tous les cotits des arcs
sont positifs. Sa complexité peut étre en O(m + n -log(n)) (avec n le nombre
de sommets et m le nombre d’arcs).

e L’algorithme de Bellman-Ford fonctionne avec des arcs a colts négatifs. Sa
complexité peut étre en O(nm).

e L’algorithme de Floyd-Warshall sert a déterminer le plus court chemin entre
toute paire de sommets. Sa complexité peut étre en O(n?).

e Une bonne solution au probléme du plus court chemin est fourni par I'algo-
rithme de Ford-Dikstra dans lequel un marquage des sommets est effectué. La
complexité est en O(n?).

Notez que ce probléme n’est pas NP-difficile !

1.4 Explosion combinatoire et complexité al-
gorithmique

Résoudre un probleme de décision ou d’optimisation nécessite dans un premier
temps de modéliser le probléme, c’est-a-dire a le formaliser, généralement sous la
forme d’un probléme mathématique. Il faut également déterminer un algorithme qui
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permettra de le résoudre, si possible de maniére efficace (c’est-a-dire, sans tester
toutes les combinaisons possibles). L’efficacité d’un algorithme s’évalue générale-
ment par sa complexité, c’est-a-dire I'ordre de grandeur du nombre de calculs qu’il va
falloir réaliser pour terminer I’algorithme.

Il n’est pas toujours possible de trouver un algorithme « efficace » a un probleme,
C’est-a-dire qui trouvera la solution en temps raisonnable. Il existe méme quelques
problémes théoriques de référence pour lesquels on n’a jamais trouvé, en 50 ans de
recherche, un algorithme exact qui ne soit pas de complexité exponentielle. On n’a
jamais pu montrer non plus que c’était impossible. Ces probléemes sont dits « NP-
difficiles ». La coloration de graphe évoquée dans 'exemple de la section 1.1.2 en
est un. Trouver un tel algorithme, ou prouver qu’il n’en existe pas, est un des dé-
fis majeurs de 'informatique théorique. En attendant, on va généralement chercher
a calculer une solution approchée de ces problémes.

Face a un probléme, on commence normalement par chercher s’il n’est pas équi-
valent a un autre probléme dont la complexité et/ou un bon algorithme sont déja
connus... L’exemple de la section 1.1.1 n’est pas NP-difficile : il existe un algorithme
issu de la théorie des graphes pouvant le résoudre avec un nombre d’opérations de
lordre de n® [2].

1l existe également des outils, inspirés de I'intelligence artificielle, qui, sans tou-
jours rivaliser avec une étude approfondie d’un probléme donné, sont généralement
assez efficaces, notamment quand le probleme est NP-difficile. Nous allons découvrir
quelques uns de ces outils dans la suite du cours.

1.5 Le cours

L’objectif de ce cours est de fournir les bases de la recherche opérationnelle & un
public de DUT Informatique. La taxonomie de I’optimisation (ou classification d’enti-
tés) ne sera évidemment pas visitée dans son intégralité. Nous nous limiterons a 'op-
timisation discréte (en nombres entiers et combinatoire) et 4 'optimisation continue
pour la programmation linéaire (cf. figure 1.2). En paralléle, la programmation par
contraintes, faisant intervenir une formalisation spécifique du probléme, sera pré-
sentée.

Dans le domaine de Uoptimisation discréte sont classés les problémes pour les-
quels certaines variables du modéle appartiennent a un ensemble discret. De nom-
breux problémes bien connus se retrouvent dans cette catégorie : probléemes d’affec-
tation, d’emploi du temps, d’ordonnancement... Parmi les branches existantes de ce
domaine, deux sont principalement étudiées par la suite :

+ la programmation en nombres entiers, pour laquelle I’ensemble discret est un
ensemble d’entiers;

« Poptimisation combinatoire, pour lequel I'ensemble discret est un ensemble
d’objets. Cette partie est uniquement introduite a titre informatif dans ce do-
cument, mais sera décrite plus en détails dans le reste du module.

Dans le domaine de loptimisation continue, et plus spécifiquement en pro-
grammation linéaire, la fonction-objectif et les contraintes sont tous les deux linéaires
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(ou affines).
Pour chacune de ces deux familles, les concepts de base sont présentés et un
exemple-type illustre nos propos.
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Chapitre

Programmation par
contraintes

La programmation par contraintes puise ses racines dans les travaux des cher-
cheurs en IA des années 1970. Au milieu des années 1990, I'intégration de techniques
de recherche opérationnelle a permis de développer de nouveaux outils performants :
extrémement expressifs, simples d’utilisation grace a I'intégration de technologies is-
sues de I'TA, et relativement efficaces.

Pour ce cours, nous allons nous familiariser avec le langage de modélisation en
programmation par contraintes MiniZinc [4]. Une série d’outils basés sur MiniZinc,
notamment un solveur de contraintes, un environnement de développement (IDE)
et une documentation sont librement téléchargeables sur la page du projet. Ils sont
compatibles avec les systémes Windows, Mac OS et Linux.

2.1 Probléeme de satisfaction ou optimisation
de contraintes

Un probléme de satisfaction de contraintes est composé de variables et de contraintes.
Les variables peuvent prendre n’importe quelle valeur prises dans un domaine a dé-
finir. Généralement, le domaine est un intervalle de nombres entiers : 1..10 repré-
sente les valeurs {1,2,3,...,10}. Dans I’exemple de la coloration de cartes de la
section 1.1.2, chaque région sera représentée par une variable. Elle pourra prendre
une valeur entre 1 et 4 suivant la couleur dans laquelle la région sera colorée.

Attention, si MiniZinc (comme d’autres langages de modélisation) est considéré
comme un langage de programmation, il est fondamentalement différent des lan-
gages impératifs comme le Java ou le C. On ne manipule pas d’états mémoire, il n’y
a pas de structure de contrdle, les instructions ne sont pas exécutées dans un ordre
défini : les variables ne sont pas des emplacements dans la mémoire de I'ordinateur
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qu’il est possible de modifier, mais des «inconnues », au sens mathématique, que le
solveur devra affecter d’'une maniére ou d’une autre sans intervention humaine. Mi-
niZinc fait partie de la famille des langages « déclaratifs » comme le SQL ou méme le
HTML : on définit le probleme et la solution que 'on recherche, mais pas les algo-
rithmes ou méthodes de résolution.

Les contraintes sont simplement des prédicats (également appelés « expressions
booléennes »), tels qu’on les retrouve dans la plupart des langages de programma-
tion. Ce sont des formules ou des fonctions qui prennent en argument un ensemble
de variables. Elles renvoient vrai si la contrainte est validée par une affectation de
ces variables. Par exemple, pour des variables X, Y, et Z, on pourrait avoir : X <
YX#Y,X =Y+ Z X = |Y],etc. Les fameux systémes de n équations a n in-
connues étudiés au collége et au lycée peuvent étre considérés comme des problemes
de satisfaction de contraintes.

Ici, la seule limite sera I'expressivité du langage et les fonctionnalités du sol-
veur. MiniZinc supporte une centaine de types de contraintes. Pour la coloration de
graphes, les contraintes vont imposer que deux nceuds voisins soient colorés diffé-
remment (X # Y).

Voici un programme MiniZinc qui modélise la coloration de la carte de France
en quatre couleurs (représentées par les entiers 1 a 4) :

var 1..4 :nord_picardie; var 1..4 :normandie;

var 1..4:ile_de_france; var 1..4:est;

var 1..4 :bretagne; var 1..4 :pays_de_la_loire;
var 1..4 :centre; var 1..4 :bourgogne_franchecomte ;
var 1..4 :sud_ouest; var 1..4 :rhonealpes_auvergne ;
var 1..4 :sud; var 1..4 :paca;

constraint nord_picardie != normandie;

constraint nord_picardie != ile_de_france;

constraint nord_picardie != est;

constraint normandie != bretagne;

constraint normandie != pays_de_la_loire;

constraint normandie != centre;

constraint normandie != ile_de france;

constraint ile _de france != centre;

%

solve satisfy ;

L’instruction var 1.4: nord_picardie ; déclare une variable nord_picardie, qui
peut prendre une valeur entiere comprise entre 1 et 4. Plus loin, la ligne constraint
nord_picardie != normandie;impose que la variable nord_picardie prenne une va-
leur différente de la variable normandie. Enfin, solve satisfy ; indique que le solveur
devra trouver une solution quelconque, satisfaisant toutes les contraintes.

Une fois le programme écrit, il suffit de lancer le solveur pour obtenir une solu-
tion :

> minizinc france.mzn
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I
=

nord_picardie =

normandie = 3;
ile_de_france = 2;

est = 3;

bretagne = 1;
pays_de_la_loire = 2;
centre = 1;
bourgogne_franchecomte = 4;
sud_ouest = 3;
rhonealpes_auvergne = 2;
sud = 1;

paca = 3;

L’énoncé complet du probleme consiste a trouver le nombre minimal de couleurs
pour colorer la carte. Il y a un objectif a optimiser, on parle donc de probléme d’optimi-
sation de contraintes. Concrétement, on ajoute ce nombre de couleurs comme variable
au probléme, et on va demander au solveur de minimiser ce nombre. Comme on sait
que c’est toujours possible avec 4 couleurs, et toujours impossible avec une seule
couleur, on peut se fixer ce minimum et maximum. Voici la variante du probléme :

var 2..4 :nb_couleurs;

var 1..4:nord_picardie; var 1..4 :normandie;
var 1..4 :ile_de_france; var 1..4:est;
%

constraint nord_picardie <= nb_couleurs;
constraint normandie <= nb_couleurs;
constraint ile _de france <= nb_couleurs;
constraint est <= nb_couleurs;

%

constraint nord_picardie != normandie;
constraint nord_picardie != ile_de_france;
constraint nord_picardie != est;
constraint normandie != bretagne;

%

solve minimize nb_couleurs;

constraint nord_picardie <= nb_couleurs;... est une série de contraintes qui
permet de fixer facilement le nombre de couleurs maximal du probléeme. Enfin, la
derniére ligne a été modifiée en solve minimize nb_couleurs;, pour que le solveur
trouve maintenant une solution pour laquelle nb_couleurs soit le plus petit possible.
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2.2 Lelangage MiniZinc

2.2.1 Instructions et commentaires

Une instruction MiniZinc est une déclaration de parametre, de variable, de contrainte
ou d’objectif de résolution. Toute déclaration se termine par un point-virgule.
On peut commenter une ligne avec le caractere %.

2.2.2 Parametres

On peut déclarer en MiniZinc des parameétres (ou constantes) avec la syntaxe :
par type : nom [= valeur];

par int: nb_couleurs = 3;

Les types supportés par MiniZinc sont bool, int, float et string. Les tableaux et
matrices sont également supportés (voir section suivante).

On peut également déclarer le paramétre et donner sa valeur plus loin dans le
programme :

par int: parameter;
% ...

parameter = 3;

Pour de nombreux problémes, cela peut permettre de définir une modélisation
générale du probleme, et les cas particuliers dans une autre section du programme,
voire dans un fichier séparé. On ne peut évidemment affecter un parameétre qu’'une
seule fois.

Les valeurs peuvent étre des expressions (3 « 2 + 4...)

Les parametres apparaissent dans les contraintes exactement comme s’il s’agis-
sait de variables.

2.2.3 Variables

Les variables sont les « inconnues » du probléme, que le solveur va essayer d’af-
fecter. Chaque variable doit étre définie avec son domaine, c’est-a-dire ’ensemble
des valeurs possibles pour la variable. Les variables peuvent étre booléenes, entiéres
ou flottantes.

On déclare une variable avec la syntaxe : var domaine : nom [= expression];

var int: ex1;
var 1..6: ex2;
var {1, 2, 5, 9}: ex3;

Le domaine peut étre un type, un intervalle ou une liste de valeurs. Les domains
infinis (notamment int) sont mal supportés par les solveurs (MiniZinc considére qu’il
s’agit du domaine —10 000 000..10 000 000, qui n’est pas vraiment infini), évitez-les
si possible.
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2.2.4 Contraintes

Les contraintes définissent le probléme. Toute contrainte est une expression boo-
léenne, qui peut étre définie a I'aide des opérateurs et fonctions suivantes :

Opérateurs logiques (si z et y sont des booléens) :
Conjonction («et» logique) : x/\'y

Disjonction («ou» logique): x\y

Implication (si - alors): x ->y

Equivalence (si et seulement si) : x <->y

Négation : not(x)

«ou» exclusif: x xory

Opérateurs de comparaison : On retrouve les opérateurs classiques dont la
signification est évidente :!=, <, <=, =, >, >=

Opérateurs arithmétiques : On retrouve les opérateurs classiques dont la si-
gnification est évidente : *, +, -, /, mais aussi les fonctions mathématiques classiques
abs(x), max(x, y), min(x, y), mod(x ,y), pow(x, y), div(x, y) (ce dernier réalise une di-
vision entiére).

Fonctions sur les réels : Quand on travaille sur les types réels, on a accés a
des fonctions mathématiques spécifiques : fonctions trigonométriques, logarithmes,
racines, etc.

2.2.5 Type de probléeme

Un programme MiniZinc se termine toujours par l'objectif a réaliser. Celui-ci
peut étre de trois types :

« solve satisfy;
+ solve minimize expression arithmétique;
- solve maximize expression arithmétique;

Dans le premier cas, on cherche simplement une solution, dans les autres cas on
cherche une solution qui optimise (en min ou en max) 'expression donnée.
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2.2.6 Tableaux

Comme dans la plupart des langages de programmation, on peut définir des ta-
bleaux (et des matrices) de variables ou constantes. Ici, les tableaux permettent no-
tamment de définir des modeles de problemes dont la taille peut varier (comme le
nombre de personnes dans I'exemple de la section 1.1.1).

La syntaxe de la déclaration est :
array [intervallel, intervalle2, ...] of variable/paramétre : nom

Les intervalles correspondent aux indices de la matrice, chaque intervalle cor-
respondant a une dimension de la matrice. Notez qu'on peut donc les démarrer a
n’importe quelle valeur (le plus souvent 1). Dans 'exemple suivant, on définit un
tableau tab de 10 variables (indicées de 1 a 10) dont le domaine est I'intervalle 1..20 :

array [1..10] of var 1..20: tab;

Ici, on déclare les parameétres, notamment la matrice, qui vont servir a définir le
probléme de 'exemple de la section 1.1.1 :

par int: nbpers;
array [1..nbpers, 1..nbpers] of par int: preferences;

Les personnes sont représentées par un tableau de variables. Le premier couple
est représenté par les variables des indices 1 et 2, le deuxieme couple par les variables
des indices 3 et 4, etc. La personne A sera représentée par la valeur 1, la personne B
par la valeur 2, etc.

array [1..nbpers] of var 1..nbpers: couples;

Le contenu des tableaux peut étre défini, pour les tableaux a une dimension, par
la syntaxe : [ exprl, expr2, ... ], et pour les tableaux/matrices a deux dimensions, par
la syntaxe :

(| lict, lic2, ..., |
[2¢1, [2¢2, ..., |
)
Les données de la section 1.1.1 pourraient étre définies comme suit :
nbpers = 4;
preferences = [|
0, 0, 6, 10,]
3, 0, 7, 2,
3, 9, 0, 4,
7, 8, 4, 0 |];

La solution « A avec C, B avec D » sera ainsi représentée par le tableau couples
=[1,3,2 4]

On accéde aux éléments d’un tableau avec une syntaxe classique : a[i] corres-
pond a I’élément d’indice ¢ dans le tableau a. Pour une matrice, m[i, j] correspond a
I’élément situé a la ligne d’indice 4 et la colonne d’indice j dans la matrice m.
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2.2.7 Générateurs

Minizinc propose une syntaxe permettant de générer le contenu d’un tableau. Il
s’agit d’une syntaxe que 'on retrouve souvent en programmation fonctionnelle et en
mathématiques.

L’idée est d’appliquer une expression (i.e., une formule) sur un ensemble, généra-
lement défini a partir d’intervalles, de produits cartésiens et de filtres. On obtient un
tableau qui résulte de I'application de I'expression sur chaque élément de ’ensemble.
La syntaxe est [ expression | ensemble ]

Par exemple, [ 2 *i|iin 1.3 ] correspond au tableau [ 2, 4, 6 ]. On la lit « pour
tout ¢ de 'intervalle 1..3, réaliser I'opération 2 X @ ».

On peut faire des choses plus compliquées, par exemple : [i *j|i,] in 1.3 where
i<j].«i,jin 1.3» réalise le produit cartésien 1..3 x 1..3 = {(1,1), (1, 2), (1, 3),
(2,1),(2,2),(2,3),(3,1),(3,2), (3, 3) }. Le where filtre ce produit cartésien pour ne
garder que les éléments pour lesquels ¢ < j. Enfin, on réalise pour chaque élément
du tableau 'opération i x j. On obtient le tableau [ 1*2,1*3,2*3]=[2,3,6].

On peut utiliser les générateurs pour générer des contraintes, a ’aide notamment
du mot-clé «forall » :

constraint forall ( [ couples[i] != couples[j]
| i, j in 1..nbpers where i < j ]);

Equivalent & couples[1]!= couples[2], couples[1]!= couples[3], couples[2]!=
couples[3], etc., ce qui signifie que tous les éléments du tableau couples devront étre
différents.

Enfin, il existe une syntaxe alternative, un peu plus proche du langage mathé-
matique pour le mot-clé forall, qui consiste a placer les ensembles servant a la gé-
nération avant I’expression :

constraint forall (i, j in 1..nbpers where i < j)(
couples[i] != couples[j] );

Ce dernier exemple est tout a fait équivalent au précédent. Observez ’empla-
cement des parenthéses. On peut également utiliser cette syntaxe pour réaliser des
agrégats, portant sur des nombres entiers : sum, product, min et max, par exemple :

constraint total = sum (i in 1..nbpers) (couples[i]);
Cela correspond a la formule mathématique :
total = Z couples|i]
€ 1..nbpers
2.2.8 Contraintes portant sur des tableaux

Il est possible d’utiliser une variable comme indice de tableau ou de matrice. On
pourra ainsi obtenir la satisfaction d’un couple dans le probléme de la section 1.1.1 :

solve maximize sum(i in 1..(nbpers div 2)) (
preferences[couples[2 « i — 1], couples[2 =« i]] +
preferences[couples[2 « i], couples[2 « i — 1]]);
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D’autres fonctions sont disponibles :
Concaténation de deux tableaux : x ++ y (tableaux a une dimension uniquement)

Changement de dimension : array1d(x) six est un tableau a une dimension, il est
«aplati» en une dimension (pour une matrice a deux dimensions par exemple,
les lignes sont mises bout-a-bout).

array2d(x, 1..10, 1.20) transforme le tableau x en matrice a deux dimen-
sions de 10 lignes et 20 colonnes (on peut évidemment changer la taille et les
indices)

Projection : col(x, n) renvoie la n® colonne de la matrice x, row(x, n) renvoie la
n® ligne

Taille : length(x) renvoie le nombre d’éléments du tableau x

2.2.9 Contraintes globales

Les contraintes globales imposent des propriétés « complexes » sur des tableaux.
Elles correspondent souvent a des sous-problémes trés généraux qui pourraient étre
modélisés séparément, mais de maniére moins efficaces. Elles sont indispensables
pour modéliser efficacement des problémes de taille industrielle. Elles doivent étre
«importées » pour étre utilisées dans MiniZinc avec la commande include.

all_different(x) : impose que toutes les valeurs du tableau x soient différentes,
alldifferent_except_0(x) : idem, mais la valeur 0 peut apparaitre plusieurs fois,
nvalue(x) : renvoie le nombre de valeurs différentes apparaissant dans le tableau x,
count(x, n) : renvoie le nombre de fois ou la valeur y apparait dans le tableau x,
member(x, e) : impose que e soit un élément du tableau x,

lex_less(x, y) : impose que les valeurs du tableau x soient avant les valeurs du tableau
y dans Pordre lexicographique (i.e., « alphabétique »). Il y aussi les variantes
lex_lesseq (les tableaux peuvent étre égaux), lex_greater et lex_greatereq,

maximum(x) : renvoie la plus grande valeur du tableau x (il y a aussi minimum),

D’autre contraintes sont disponibles, n’hésitez pas a consulter la documentation
officielle de MiniZinc [4]...

2.3 Modeéle final pour P'affectation de coloca-
taires

On reprend les extraits disséminés dans ce chapitre, en utilisant ici la contrainte
globale all_different et quelques contraintes supplémentaires pour éliminer des sy-
métries (cf section 2.4.3) :
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»

include "all_different .mzn”;

par int: nbpers;
array [1..nbpers, 1..nbpers] of par int: preferences;

array [1..nbpers] of var 1..nbpers: couples;

constraint all_different (couples);

% Elimination des symétries

constraint forall (i in 1..nbpers div 2)(
couples[2«i—1] < couples[2+i]);

constraint forall (i in 2..nbpers div 2)(

couples[2«i—3] < couples[2+i—1]);

solve maximize sum(i in 1..nbpers div 2)(

preferences[couples[2 = i — 1], couples[2 « i]] +

preferences[couples[2 « i], couples[2 « i — 1]]);
nbpers = 4;
preferences = []

0, 0, 6, 10,]

3, 0, 7, 2,

3, 9,0, 4,

7, 8, 4, 0 |];

2.4 Comment ca marche?

En réalité, le probléme de satisfaction de contraintes (CSP) est un probléme com-
binatoire « générique », c’est-a-dire que n’importe quel probléme combinatoire peut
étre converti en CSP. En théorie de la complexité algorithmique, on dit que le CSP est
NP-complet. Si on arrive a résoudre efficacement le CSP, on aura résolu tous le pro-
blémes combinatoires! En attendant, les seules techniques connues pour résoudre
le CSP utilisent soit des algorithmes a complexité exponentielle (c’est-a-dire qu’a
chaque fois qu’on ajoute une variable au probléme, on multiplie potentiellement le
temps de calcul par le nombre de valeurs de son domaine), soit des algorithmes qui
calculent des solutions approchées. Par exemple, on peut ne pas réussir a satisfaire
toutes les contraintes, ou dans le cas des problemes d’optimisation, s’arréter sur une
solution correcte sans aller jusqu’a optimal. Pour une coloration de graphe de tres
grande taille, on pourra chercher a le colorer en 5 couleurs, méme si c’est théorique-
ment possible de le faire avec seulement 4.
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2.4.1 DP’algorithme d’exploration arborescente systéma-
tique

Pour résoudre un probléme combinatoire de maniére générique, la technique ha-
bituelle consiste a construire un arbre de recherche. On prend une variable du pro-
bléme, et on lui affecte une valeur, puis on prend une deuxieme variable, on lui affecte
une valeur, et ainsi de suite. Si la valeur choisie ne satisfait pas une contrainte, on
annule la derniére décision et on choisit une autre valeur. Dans I’exemple de la colo-
ration de la carte de France (cf section 1.1.2), on peut suivre la démarche suivante :

1. on colore le Nord-Pas-de-Calais-Picardie avec la premiére couleur disponible,
le blanc.

2. on colore la Normandie voisine également en blanc.

3. comme on ne satisfait pas la contrainte nord_picardie != normandie, on re-
vient au point 2.

4. on colore la Normandie avec la deuxiéme couleur disponible, le rouge.
5. on colore I'Ile-de-France en blanc.

6. comme on ne satisfait pas la contrainte nord_picardie != ile_de_france, on
revient au point 5.

7. on colore I'lle-de-France en rouge.

8. comme on ne satisfait pas la contrainte normandie != ile_de_france, on re-
vient au point 7.

9. etc.

2.4.2 Le filtrage

Pour améliorer les performances de I’algorithme d’exploration, I'idée centrale de
la programmation par contraintes est de filtrer les valeurs des domaines : au fur et a
mesure de la recherche, on supprime des valeurs des domaines des variables quand
les contraintes permettent de se rendre facilement compte qu’elles ne peuvent plus
étre dans une solution. Reprenons I'’exemple de la carte de France.

1. on colore le Nord-Pas-de-Calais-Picardie avec la premiére couleur disponible,
le blanc.

2. par filtrage, on supprime le blanc des régions voisines : Normandie, ile de
France et Est

3. on affecte alors directement le rouge a la Normandie

4. parfiltrage, on supprime le rouge des régions voisines (Bretagne, Loire-Atlantique,
Centre et Ile de France; le rouge n’est déja plus disponible pour le Nord-
Picardie).
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5. on affecte alors directement la troisiéme couleur a I'Ile-de-France, le vert.
6. on supprime le vert des régions voisines.

7. etc.

L’intérét du filtrage, c’est qu’il est parfois possible de se rendre compte trés vite
que certaines affectations sont vouées a I’échec, ce qui permet d’éviter d’explorer de
grandes parties de I’arbre. Une bonne modélisation d’un probléme essaie d’utiliser
au mieux les contraintes disponibles pour améliorer le filtrage. Une bonne connais-
sance des contraintes disponibles (et notamment des contraintes globales) est né-
cessaire. Par exemple, on peut utiliser une contrainte all_different(nord_picardie,
ile_de_france, est) pour remplacer trois contraintes d’inégalité. Si un filtrage sup-
prime le blanc et le noir de I'lle-de-France et de I'Est, on peut en déduire que I'une
des deux sera nécessairement verte et I'autre rouge. On peut alors immédiatement
supprimer ces deux couleurs du Nord.

2.4.3 Le probléeme des symétries

Dans un probléme, une symétrie survient quand on peut déduire une solution a
partir d’une autre. Pour la carte de France, si on trouve une solution, on peut simple-
ment inverser deux couleurs pour retrouver une autre solution. Pour le probléme des
appariements de la section 1.1.1, si on a une solution en appariant A avec B, on a une
autre solution simplement en appariant B avec A. Cependant, I’algorithme d’explo-
ration systématique, méme s’il n’a pas trouvé de solution en appariant A avec B, va
quand méme essayer d’associer B avec A. Cela génére de nombreux calculs inutile :
chaque symétrie va potentiellement multiplier le temps de calcul par 2.

Pour éliminer les symétries, on fixe un ordre aux solutions : chaque couple dans
Pordre alphabétique, et I’ensemble des couples également dans I'ordre alphabétique.
La contrainte globale lex_lesseq est beaucoup utilisée pour gérer de genre de cas.
Dans le probleme de coloration, on peut simplement fixer les couleurs de trois régions
mutuellement adjacentes pour diviser par 12 les temps de calcul.

2.4.4 Pour aller plus loin...

Au dela des techniques de base, les chercheurs en IA continuent d’améliorer les
solveurs. Par exemple, l'ordre dans lequel les variables sont affectées a beaucoup
d’impact sur la taille de 'arbre de recherche : il vaut mieux commencer par les va-
riables les plus contraintes. Si on ne trouve pas de solution au bout d’un certain
temps, il peut étre intéressant de recommencer la recherche depuis le début en chan-
geant 'ordre d’affectation. On peut chercher a combiner les contraintes entre elles
pour améliorer le filtrage. On peut cherche a paralléliser les algorithmes de recherche
pour mieux exploiter les microprocesseurs modernes, etc.
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Chapitre

La Programmation Linéaire

3.1 Comment lier mathématiques et optimisa-
tion?

Tout le monde comprend en quoi consiste une optimisation. D’un point de vue
mathématique, une maximisation peut se modéliser par la formulation 1

Probléeme 1 (Maximisation)]

Pour une fonction f : R™ — R donnée, et un ensemble M C R", trouver
2 € M qui maximise f sur M tel que: (&) > f(z), Vz € M.

Du point de vue de la terminologie :
o f est appelée fonction-objectif.
e )M est appelé espace admissible.

e 7 est appelé maximiseur de f sur M.

Tout x € M est appelé solution réalisable ou admissible.

e Les composantes z;, i = {1,...,n} du vecteur x sont appelées variables
d’optimisation ou de décision.

Il est possible de maximiser ou de minimiser f sur M. Pour ne pas faire de redon-
dance, on ne travaillera que sur des maximisations. Nous verrons qu’il est toujours
possible de transformer une minimisation en maximisation.

21
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3.2 Inéquations linéaires

Partons sur de bonnes bases en rappelant quelques notions liées aux inéquations.

,—(Déﬁnition 1 (Inéquation Iinéaire)}

Une inéquation linéaire est une expression de la forme :

a1x1 + a2x2 + ...+ anTn < b,

avec x; les variables, a; les coefficients des variables, b une constante et n le
nombre d’inconnues.

On peut évidemment inverser le sens d’une inéquation en multipliant par un

nombre négatif de chaque coté.

Définition 2 (Solution d’une inéquation linéaire)]

On appelera solution de I'inéquation linéaire a1 x1 +a2x2+. ..+ anxn < b

tout n-uplet (y1, .. .,yn) tel que 'inégalité a1y1 + azy2 + ... + anyn < b
est vraie.

%)

2. 2r) + 309 > 9

) i
R

9

-

211 + 372 < 9

/o

-

F1G. 3.1 : Exemple de résolution graphique d’une inéquation dans le plan.
L’ensemble des solutions de I'inéquation 2z + 3x2 < 9 est un demi-plan
dans le systéme d’axes Oz (en gris). La frontiére de ce demi-plan est la

droite 221 + 322 = 9.
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,—[Déﬁnition 3 (Systéme d’inéquations linéaires)}

On appelle systéme de m inéquations linéaires a n inconnues un systéme de
la forme :

a11T1 + a1222 + a1323 + ... + A1 Tn < b1

a21T1 + G22%2 + 2323 + ... + a2nTn < b2

a31T1 + @322 + a33x3 + ... + a3nTn < b3

Am1T1 + Gm2T2 + am3x3 + ... + GmnTn < by

ou x; est une variable dans la colonne j, a;; est le ccefficient de la variable
x; sur la ligne ¢, b; est la constante de la ligne %, n est lenombre d’inconnues
et m est le nombre d’inéquations.

3.3 Del’algeébre au programme linéaire

Faisons quelques rappels d’algébre linéaire. Nous savons tous que cela est néces-
saire! (cf. module M1202)

Définition 4 (Fonction linéaire)}

Une fonction f : R™ — R est linéaire si et seulement si f(z +y) = f(z) +
f(y) et f(Az) = Af(z),avecz,y € R" et A € R.

Exemple de fonctions linéaires :
o filz) ==
o fo(z) = 3z1 — bxo,

o f3(x) = Ax.

Exemple de fonctions non-linéaires :
[ ] f5 (.’L‘) = 1,
o fo(x)=x+1,

o fr(z) =27,
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e fr(x) = sin(x).

Remarque 1

Toute fonction linéaire f : R™ — R peut s’exprimer dans la forme f(z) =
Az, avec A € R™*"™ une matrice.

Fournissons quelques détails maintenant sur les notations :

T

T2
o 1 € R"™ est le vecteur colonne . avec T1,I2,...,Tn € R.

Tn

e 27 correspond 4 la transposée du vecteur z, qui est alors le vecteur ligne
(x1,22,...,ZTn).

ai1 ai12 oo A1n
o a21 a2 e a2n
e A€ R™*™ est la matrice
am1 Am?2 . Amn
ail a1 e anl
a2 a22 e an2

AT est la transposée de la matrice A, soit

A1n azn . Anm

A partir de ces notations, nous allons définir ce qu’est notre probléme d’opti-
misation linéaire. Il s’agit en effet d’un cas particulier d’optimisation, pour lequel la
fonction f est linéaire et 'ensemble M est défini comme I'intersection d’'un nombre
fini de plans a partir des contraintes d’égalité et d’inégalités. Voyons de quoi cela a
Pair.



3.4. RESOLUTION D’UN PROBLEME LINEAIRE

25

,—[Déﬁnition 5 (Programme Linéaire)]

informations des contraintes.

n
T
maxc r=ci1r1 +c1x1+ ... +cnn = E @598
=i

<
(LP) ai1T1 + ai2x2 + ...+ ainTn | = | b, L.,m
>
< .
Ti| 3 0, :€IC{l,...,m}
ou x € R" est le vecteur de variables inconnues.
La fonction f(z) = ¢’ est appelée la fonction-objectif ou fonction

de coiit ou fonction économique. Le vecteur ¢ € R" est le vecteur de
couit. La matrice A (de terme général (as;)) et le vecteur b collectent les

,—[Remarque 2 (Résolution du (LP))]

admissible M.

Généralement, la matrice A n’est pas carrée (m # n). Par conséquent, la
résolution du (LP) est impossible par inversion matricielle. Habituellement,
A a plus de colonnes que de lignes, signifiant qu’il y a plus d’inconnues que
d’équations de contraintes. Le systéme est sous-déterminé. De ce fait, un
grand choix de solutions potentielles maximisant ¢’ z existe dans I'espace

,—[Remarque 3 (Maximisation et minimisation)]

fonction objectif sera du coup — f ().

Dans la littérature, I'opérateur de minimisation remplace parfois celui de
maximisation. Le passage de I'un a ’autre requiert une simple manipulation :
la maximisation de ¢’z devient la minimisation de —c” x. Le résultat de la

3.4 Résolution d’un probléme linéaire

La résolution du probleme (LP) peut nécessiter une réécriture pour appliquer des
algorithmes de résolution comme celui du simplexe (cf. section 3.4.3). Toutefois, dans
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le cas ou seules 2 voire 3 variables sont utilisées, une résolution graphique peut étre
effectuée.

3.4.1 Résolution graphique

Par souci de lecture et de construction des graphiques, nous nous limiterons au
cas 2D. Nous avons évoqué au préalable la notion de demi-plan comme solution d’une
inéquation, chaque inéquation correspondant a une contrainte.

L’idée est simple : construire la zone-solution en obtenant I'intersection de tous
les demi-plans qui sont solutions des inéquations.

Puisqu’un dessin vaut mieux qu’un long discours, illustrons nos propos par un
exemple. Par la suite, nous allons chercher a résoudre le (LP) suivant :

max 100x1 + 250z2
sujeta: x1 + x2 < 40,
40x1 + 120x2 < 2400,
6z + 1222 < 312,

z1,T2 > 0.

Généralités sur les fonctions de R?

Chaque contrainte correspond permet d’établir une équation de droite. L’équa-
tion générale d’une droite dans R? s’écrit :

h(z,y) = azx + by = c.

A partir de cette formulation, nous pouvons définir un vecteur normal  la droite,
i.e. la perpendiculaire a la droite. Ce vecteur, noté ny, ici, s’écrit :

o = (b)

1l est orienté dans la direction des valeurs croissantes de h. S’il est orienté dans
I’autre sens, il sera tourné vers les valeurs décroissantes de h. Cette notion est essen-
tielle pour savoir quel demi-plan il nous faut récupérer avec les inéquations.

Généralités sur les polyédres convexes

L’espace réalisable est construit par 'intersection de tous les demi-espaces (car
soit on travaille avec <, soit avec >) a partir des contraintes. L’intersection de tous
ces demi-espaces est ce que I'on appelle un polyeédre.
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Définition 6 (Ensemble convexe)]

Un ensemble M est dit convexe si I'intégralité d’une ligne connectant deux

points de M appartient a M.

(a) Ensemble convexe (b) Ensemble non-convexe

,—[’Ihéoréme 1 (A propos des ensembles convexes)} N

e L’ensemble-solution d’une inéquation linéaire est un ensemble
convexe.

e L’intersection de deux ou de plusieurs ensembles convexes est un en-
semble convexe.

e L’ensemble-solution d’un systéme d’inéquations linéaires est un en-
semble convexe.

Le théoréme suivant illustre finalement 'importance de la relation entre la solu-
tion du probléeme linéaire et de ’ensemble convexe.

Théoréme 2 (Solution sur un polyédre)]

Soit f une fonction linéaire définie sur un polyedre convexe borné. Alors
la fonction f atteint sa valeur maximale en au moins un des sommets du
polyédre convexe.
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Au sujet des contraintes

Pour larésolution graphique, travaillons avec les 3 contraintes de notre probléme.
Pour cela, nous introduisons les 3 fonctions linéaires suivantes :

e gi(x1,x2) = 1 + X2,
° gz(l’l,l’z) = 40x1 + 12022,

e g3(x1,x2) = 61 + 1222.

Les équations g1 (z1,z2) = 0, g2(z1,z2) = 0, g3(x1,x2) = 0, définissent des
lignes droites dans R?.

1 .
Avec g1 (ml, rg) = x1 +x2, lanormale est Ng, = 1) Le vecteur pointant vers

les valeurs croissantes de g1, il va mener a tout point (z1, 1172)T avec g(z1,x2) > 40.
Dans la direction opposée, on atteindra tous les points (z1, xz)T avec g(z1,22) <
40. Puisque la contrainte du probléme est 1 + z2 < 40, seuls les points avec
g(x1,z2) < 40 sont dans I'espace réalisable.

Le méme travail est effectuée avec les autres contraintes, ce qui nous fera donc
3 lignes au total (cf. figure 3.2).

F1G. 3.2 : lllustration des contraintes avec les 3 fonctions g1, g et g3.

Au sujet de la fonction-objectif

Maintenant que I’espace de solution admissible est obtenu, il nous reste a trouver
le meilleur point y appartenant qui satisfera au mieux la fonction de coit.

Dans notre probléme, 'objectif est de maximiser :

f(xl,azg) = 100x1 + 250x2.
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Tous les points sur la droite f(z1,22) = d donnera d comme valeur de la
fonction-objectif. La figure ci-dessous illustre deux déplacements de f :

1. Avec d = 3500,
2. Avec d = 5500.

Comme précédemment, les valeurs de la fonction vont augmenter dans la direc-
tion de la normale de f. Ici, sa normale est :

100
nf(ml,mg) = 250 .

Puisque nous devons maximiser f, nous allons déplacer la droite de la fonction-
objectif dans la direction de n : le ou les derniers points de la ligne qui intersecteront
Pespace réalisable seront nos optimums. La figure 3.3 nous montre que la solution
optimale est trouvée en un point (z1,z2)7 = (30,10)7, avec f(z1,z2) = 5500.

\ x2
10

0 I n /J \\ B I x1
ny = (=100, -250) £ =100z — 25029 — —3500

F1G. 3.3 : Déplacement de la fonction-objectif (en rouge) vers I'optimum (en
vert).

Configurations possibles

Au final, I'intersection entre la fonction-objectif et 'ensemble des contraintes -
noté M. - peut conduire a 0, 1, ou & une infinité d’optimums. La figure 3.4 met en
évidence les différentes configurations qu’il est possible de rencontrer en program-
mation linéaire.
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M¢

F1G. 3.4 : Différentes géométries de ’espace réalisable (en gris), de la fonction-
objectif (en rouge) et de la solution optimale (en bleu).

~ Remarque 4 \

e L’ensemble M, peut étre borné (les 2 tracés du haut de la figure 3.4)
ou non borné (les 2 tracés du bas de la figure 3.4).

e Si M. est borné, il existera toujours une solution optimale.

e L’optimum peut étre unique (les 2 tracés de gauche de la figure 3.4)
ou non (les 2 tracés de droite de la figure 3.4).

e Méme si M. est non borné, une solution pourrait exister. Tout dépend
du vecteur de cofit c.

e Si une solution optimale existe, I'un des sommets de M. en fera
toujours partie.

Résumé des étapes a suivre :

1. Tracer I'ensemble réalisable M. a partir des contraintes.

2. Tracer la fonction-objectif. Dans la pratique, on la fait initialement passer par
Orn (par (0,0)7 dans R?).
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3. Déplacer la ligne de la fonction-objectif dans la direction définie par le vecteur
c pour une maximisation.

4. La solution optimale est 'intersection la plus extréme entre M. et la ligne de
la fonction-objectif.

3.4.2 Du programme linéaire a la forme standard

La résolution du simplexe se fait par des tableaux. Vous aurez ’occasion de vous
exercez a la main avec un nombre de contraintes et d’inconnues raisonnable. Dés que
leur nombre devient conséquent, la programmation est de mise.

La résolution du probleme (LP) peut nécessiter une réécriture pour appliquer des
algorithmes de résolution. Détaillons la réécriture sous chacune de ces deux formes,
qui sont la forme canonique et la forme standard.

La forme canonique

La forme canonique est décrite dans I'encadré suivant. Il s’agit de la formulation
du probleme linéaire avec des inéquations de méme sens.

,—[Déﬁnition 7 (Forme canonique (LPC))}

Soient ¢ = (cl,cz,...,cn)T e R", b= (bl,bz,...,bm)T e R"et A=

ailil ai2 500 A1n
a1 a2 000 a2n, %
€ R™”". Le programme linéaire canonique
am1 am?2 000 Amn
consiste & trouver z = (1, x2, . . ., mn)T € R" tel que la fonction-objectif

n
E ¢;x; soit maximal tout en étant sujet aux contraintes :
i=1

n
E Q55 < bi, izl,...,m
j=1

&g

IV
=
.
Il
ﬂ!—‘
E
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,—[Remarque 5 (Au sujet du (LPC))] N\

e L’ensemble M. = {x € R"|Ax < b,z > 0} est 'espace admissible
de (LPC).

e Six € M., x est une solution réalisable de (LPC).

e I € M. estla solution optimale si Vax € M., s > L.

La transformation d’un probléme (LP) en (LPC) se fait en mettant toutes les
n
contraintes sous la forme Z a;jr; < bjetx; >0, j = 1,...,n Un travail

=1
est a effectuer sur les contraintes et les variables :

1. Les contraintes d’inégalités :

n
E a;jx; > by
j=1

peut étre mis sous la forme < en multipliant les deux opérandes par —1 :

> (—ai)z; < —bi

j=1

2. Les contraintes d’égalités :

n
E ;L5 = bi
j=1

peut étre mis sous la forme < en écrivant :
n
b; < E ai;r; < b;
Jj=1

On obtient alors deux inégalités plutdt qu'une seule égalité. En se servant du
premier point, on obtient les deux inégalités sous la bonne forme :

n
E a;ijx; < b
j=1

n

(—aij)z; < —bi

S
Il
—
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3. Les variables libres :

Si une variable n’est pas contrainte a étre positive ou nulle, elle est dite libre.
Tout nombre réel x; libre est décomposé en z; = m;r —x; ,avec xj, z; >0.
Les contraintes ;7 > 0 et z; > 0 doivent par ailleurs étre ajoutées. Pour
chaque z;, nous avons maintenant deux variables supplémentaires =} et z; .

Exemple :
Considérons le probléme de maximisation suivant :

max —1,2%1 — 1,8.%‘2 — X3
sujet & :
1

x> ——
'=73

xr1 — 223 <0
xr1 — 222 <0
o —x1 <0
x3 — 222 <0
z1+z2+23=1

x2,T3 2 0.

La transformation en un (LPC) implique de changer certaines contraintes. La
variable 7 est une variable libre. Par conséquent, on remplace z1 par ] — z7,
zf, xr > 0. La contrainte 1 + x> + x3 devient : xf’ —x] +x2+x3 < let

i %
—xf +x] — 22 — 3 < —1.La contrainte x; > —% devient —azf +xz; < %

On obtient alors le programme linéaire canonique suivant :

max —1,2z1 — 1,822 — 3
sujet a :
-1 1 0 o0 1/3
1 -1 0 -2 N 0 N
1 -1 -2 0 ii 0 1
-1 1 1 0 Ll <| o |, avec Ll>o0
0 0 -2 1 T2 0 2
1 -1 1 1 T3 1 3
1 1 -1 -1 1

La forme canonique est trés utile pour visualiser les contraintes et résoudre le
probléme graphiquement. Comme indiqué précédemment, la visualisation sera d’au-
tant plus simple que 7 est petit ('idéal étant une dimension 2, voire 3). Toutefois, pour
travailler avec des algorithmes de résolution, passer des inéquations aux équations
se révéle nécessaire. Découvrons pour cela la forme standard.
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La forme standard
En partant d’inéquations, il va falloir utiliser des variables supplémentaires pour
n

transformer chaque contrainte en équations, sous la forme E ai;rj = b; avec
Jj=1
x; > 0. Cette étape nécessite quelques précautions.

Dans le cas simple, les contraintes sont toutes de type inférieur ou égal avec un
second membre b > 0. La mise sous forme standard consiste, pour chaque contrainte,
aintroduire les variables d’écart représentant I’écart entre la quantité disponible de
la ressource et la quantité effectivement utilisée par 'ensemble des x;. Formalisons
la forme standard.

,—(Déﬁnition 8 (Forme standard (LPS))} N\

Soient ¢ = (c1,¢2,...,¢n)" € R™, b = (b1,b2,...,bm)T € R™et A =

ailil alz e A1n
az1 az2 cee azn «
€ R™*" avec rang(A) = m. Le programme
Am1 am?2 000 Amn
linéaire standard consiste a trouver = (21,22, ...,2Z,)" € R™ tel que la

n

fonction-objectif Z ¢;T; soit maximal tout en étant sujet aux contraintes :
i=1

n
E Qi35 = bi, i:1,...,m
j=1

IV
\‘O
.
I
J—‘
3

1

Comment passer du (LPC) au (LPS) dans la pratique ? Soit un programme linéaire
canonique comme défini plus haut. Nous définissons un vecteury = (y1,...,ym)" €
R™ tel que :

n n
zaz‘ﬂfjébui:1,m7m = Zaijxj‘l‘yi:bi,i:l,...,m.
=1 j=1

Ce vecteur y contient les variables d’écart. De méme que pour z, y > 0.

Avec & = (2,5)7 € R™™, & = (¢,0)7 € R™™ et A = (A|I) € R™X(v+m),
on obtient le (LPS) suivant :
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AT .
max ¢ &
sujet a : Az =,
x>0
,—[Remarque 6 (Au sujet du (LPS))] N\

e Lerang(A) = m signifie que toutes les contraintes sont linéairement
indépendantes (cf. module M1202!).

e Le (LPS) n’a de sens que si m < n. Comme pour le (LP), il serait
possible de résoudre le probléme par inversion matricielle sinon, ce
qui ne donnerait plus aucun sens a ce cours :).

e L’ensemble M, = {z € R"|Az = b,z > 0} est I'espace admissible
du (LPS).

e Un élément x provenant de M est une solution réalisable du (LPS).
e I € M estla solution optimale si Vo € M, s > .

e Attention!Les quantités c, b et A ne sont pas les mémes dans le (LPC)
et dans le (LPS), puisque nous allons ajouter de nouvelles variables.

\ J

,—[Remarque 7 (Attention, cas simple !!)] N\

Dans les problémes plus proches de la vie réelle, la modélisation et leur ré-
solution de problémes n’est pas aussi simple. Certaines contraintes peuvent
étre toutes de type inférieur, supérieur, égal, avec b < 0 ou b > 0. Des
précautions supplémentaires sont alors a prendre, car en appliquant le méme
principe que pour les variables d’écart, 'origine que 'on prend habituelle-
ment comme solution initiale réalisable n’est plus une solution réalisable. Il
faut faire intervenir des variables de surplus et des variables artificielles.

Nous ne traiterons pas ce cas par la suite, mais sachez que nous ne travaillons
que sur un cas précis de programmation linéaire.

3.4.3 Larésolution par les tableaux
Notations et principe général

La méthode par tableaux permet de calculer une solution optimale au (LP). Avant
d’aller plus loin, formulons le théoréme fondamental de programmation linéaire.
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,—[’Ihéoréme 3 (Théoréme fondamental de programmation linéaire)]—

Soit un (LPS), avec M5 # &. Alors :

e Soit la fonction-objectif n’est pas bornée et il n’y a pas de solution
optimale, soit le probléme a une solution optimale et au moins un

sommet de M est parmi ces solutions.

e Si M est borné, une solution optimale existe, et z € M, est optimal
si et seulement si combinaison convexe de sommets optimaux.

Comme indiqué précédemment, il nous faut travailler sur le (LPS) :

T
max cx
sujet a : Az =b,

z > 0.

L’idée du simplexe est de se déplacer d’'un sommet de ’ensemble réalisable & un
voisin du méme ensemble, puis de répéter la procédure jusqua ce que le sommet op-

timum soit atteint.

Introduisons les notations que nous utiliserons par la suite :

i) € R" Vi =1,...,m.

e Les lignes de A sont notées : af = (a1, .-

Soit :

T

a1 a2 ... Qin ai

T

a1 Q22 ... Q2n as

A= = .
T
am1 Am2 ... Q(Gmn (€2%%)

e Les colonnes de A sont notées : a’ = (a1j,...,am;) ER™, Vj=1,... n.

Soit :

a1 a2 . a2n
(al 2. a") .

am1 Am?2 . Amn
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e Soit B ={i € {1,...,n}|z; > 0} I'ensemble des indices des composantes
positives de .

e Soit N ={1,...,n}\B = {i € {1,...,n}|x; = 0} I'ensemble des indices
des composantes nulles de x.

En considérant B, on peut écrire :

n
b:Am:E ;= g a’xz;.
i=1

JjEB

Cette équation linéaire de composantes de = a une unique solution si les vecteurs
a’,j € B sont linéairement indépendants (cf. module M1202). Dans ce cas, x est dit
solution réalisable de la base.

Théoréme 4

x € M, est un sommet de M si et seulement si x est une solution réalisable
de la base.

Le principe général du simplexe est :

1. En considérant toutes les contraintes d’un (LPC), nous obtenons un ensemble
convexe. On sait en outre maintenant que la solution optimale, si elle existe,
est 'un des sommets de ’ensemble.

2. Pour la calculer, nous allons partir d’'un de ces sommets.
3. Nous allons nous déplacer de sommet en sommet le long des arétes du

polyédre convexe jusqu’a ce que nous ayons trouver la solution optimale.

Il reste donc a répondre aux 3 questions suivantes :

1. Comment choisir 'un des sommets du polyedre ?
2. Comment se déplacer de sommet en sommet ?

3. Quels sont les critéres d’arrét nous indiquant que nous avons atteint notre
optimum ?
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Choix d’un sommet

D’apres le théoreme 3, il est suffisant de calculer les sommets de 'ensemble réali-
sable pour obtenir au moins une solution optimale. Mais comment peut-on faire cela ?

Avant tout, grace au théoreme 4, nous savons qu’un sommet peut étre caractérisé
par les colonnes indépendantes de A. En effet, la solution doit vérifier les contraintes,
ie. qu’il faut trouver un vecteur x qui vérifie Ax = b. Appelons h 'application
linéaire telle que h(z) = Az.

Pour que b soit un élément de Im(h) (les éléments Az qui sont créés par h), il
faut évidemment trouver au moins un vecteur x tel que h(z) = b. Or, si les vec-
teurs colonnes de A sont linéairement indépendantes, le systéme admet une solution
unique (méme principe qu’en M1202! Eh oui, ¢a vous sert!). Si on sélectionne des
colonnes de la matrice A et que cette sélection conduit & Ax = b, alors x est une
solution réalisable dans la base choisie.

Exemple de sélection de colonnes de A :

,—[Remarque 8 (Nombre de colonnes et dimension de l’espace)]—

Le nombre de colonnes a choisir dépend évidemment de la dimension de x.
Si z est de dimension n, n colonnes seront nécessaires. Ceci est logique, car
pour déterminer un point dans R?, 2 lignes sont nécessaires ; dans R?, 3 plans
sont nécessaires; il est possible de généraliser cela dans R"”, en travaillant
avec n hyperplans (entités de dimension (n — 1)).

L’algorithme 1 permet de calculer ces fameux sommets.
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,—[Algorithme 1 (Calcul d’'un sommet du polyédre)] N\

1. Choisir de m colonnes indépendantes a’,j € B, B C {1,...,n} de
A et construire N de sorte que N = {1,...,n}\B.

2. Fixer xn = 0 et résoudre 'équation linéaire Apxrp = b.

3. Sizp > 0, x est une solution réalisable de la base. Nous avons un
sommet! S’il existe par contre un ¢ € B tel que x; < 0, alors x n’est
pas réalisable, et la procédure est a réitérer dans un autre choix de
colonnes indépendantes.

Trouver les sommets du polyedre consiste donc “simplement” a résoudre un sys-
téme d’équations linéaires.

Exemple de calcul de sommets :

Considérons les contraintes définies par Az = b,z > 0, avec :

2 3 10 6
a=(1 50 1)0=()

Il y a au plus (421) combinaisons possibles de 2 colonnes de A :

1L Bi={1,2} = ap, = Az b= (233),351 =(2,2/3,0,0)".

2. By ={1,3} = zp, = A5lb= (;) 22 = (2,0,2,0)7.

3

3. B3 ={1,4} = zp, = Agib: (71

>,9:3 =(3,0,0,—1)".

4. By ={2,3} = Ap, est singuliére (non inversible), donc pas de solution,

2

5. By = {2,4} = zp, = Alb = (2

), z® = (0,2,0,2)".

6

), 2% =(0,0,6,2)".
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,—[Remarque 9 (Approche na'ive)] N\

e Puisque l'on sait que la solution optimale est I'un des sommets du
polyédre, 'approche naive serait de tous les calculer. Mais choisir m
colonnes parmi n quand m et n sont trés grands ne serait absolument
pas efficace! Le nombre de possibilités exploserait.

e Par exemple, en choisissant ne serait-ce que m = 90 (nombre de
contraintes) et n = 40 (nombre d’inconnues), on aboutit déja a (Z)
~ 6 * 10?° facons de choisir les colonnes.

e En outre, si M, n’est pas borné, trouver une solution n’est pas non
plus garanti.

Dans les paragraphes précédents, la notion de base est apparue. Nous allons for-
maliser cette définition car nous en aurons besoin par la suite.

,—[Déﬁnition 9 (Base et éléments hors-base)] N\

e Soit x une solution réalisable d'un (LPS), avec A la matrice de m
contraintes. Tout systéme {a’|j € B} de m colonnes linéairement
indépendantes de A, qui inclut ces colonnes a’ telles que ; > 0, est
appelé base de x.

e Soit {a’|j € B} une base de x. L’ensemble d’indices B est ap-
pelé ensemble d’indices de base et I'ensemble d’indices N =
{1,...,n}\B est appelé ensemble d’indices hors-base.

e Lamatrice Ap = (a’);jep est appelée matrice de la base et la ma-
trice Ay = (a’) en est appelée matrice hors-base.

e Levecteurzp = (z;);cB est appelé variable de la base et le vecteur
xN = (z;);jen est appelé vecteur hors-base.

Exemple de construction de la base et des éléments hors-base :

Considérons les contraintes définies par Az = b,z > 0, avec :

T

1 4 1 0 0 24 T2
A=1[3 1 0 1 0]),b=(21],2= |23
11 0 0 1 9 T4
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Considérons que = = (6, 3, 6,0, O)T € M, est une solution réalisable. Pour ce-
1 4 1

la, les colonnes de A choisiessont: | 3|, [ 1] et [ O |.Les 3 colonnes ont linéai-
1 1 0

rement indépendantes. D’apreés le théoréme 4, il s’agit d’'un sommet de ’ensemble
convexe. La base est donc formée par ces 3 vecteurs. On peut écrire :

e B=1{1,2,3}et N ={4,5},

o 25 =(6,3,6)T etzy = (0,0)7,

1 4 1
e Ap=(3 1 0|etAn =
1 1 0

o = O
— O O

Maintenant que nous savons claculer un sommet, il faut voir comment nous dé-
placer de sommet en sommet.

Changement de sommet

Dans la plupart des problémes, cette partie est répétée plusieurs fois. Lidée est de
modifier les ensembles B et [N pour calculer un nouveau sommet. En effet, un som-
met du polyeédre est calculé en choisissant des colonnes linéairement indépendantes
de A. Donc si nous choisissons une autre combinaison de colonnes, un autre sommet
sera obtenu (cf. 'exemple sur les calculs des sommets du polyédre).

Par la suite, nous cherchons 4 calculer une meilleure solution réalisable z1 de la
base. Les deux ensembles d’indices suivants sont utilisés :

BT = (B\{p}) U{q}
Nt = (N\{q}) u{p}

Quelles sont les différences par rapport a B et /N ? Nous avons un changement
entre les indices p et g. L’indice p sort de B et rentre dans NV, alors que I'indice g sort
de N et rentre dans B. Cette procédure s’appelle le changement de base.

Formalisation :

Peut-étre vous en doutez-vous, mais le choix des indices p et ¢ n’est pas fait au
hasard (on pourrait, mais cela ressemblerait beaucoup a I’approche naive). Certains
critéres doivent étre respectés :

1. Si x est réalisable, T doit rester réalisable : Az = b,z > 0 = Azt =
bzt > 0.

2. Pour une maximisation, la valeur de la fonction-objectif doit augmenter : ¢” 2™ >

T
c .
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Les calculs doivent maintenant nous fournir la maniére dont cette augmentation
doit étre faite, i.e. quels choix formuler sur B* et N7, i.e. quels choix effectuer pour
les pivots p et g. Le principe est illustré par la figure 3.5. On considére un rayon z
partant de « dans une direction s en parcourant une longueur de ¢ :

z(t) =z +ts, t > 0.

F1G. 3.5 : Idée du changement de base dans la méthode du simplexe. Il faut
trouver la direction s telle que la fonction-objectif croisse le long de cette
direction.

Afin de ne pas surcharger le document, nous omettrons les calculs par la suite. Il
vous faut tout de méme chercher a comprendre ce qu’il en est. En effet, sans rentrer
dans les détalils, il est possible de choisir la direction s de sorte que seulement la va-
riable hors-base x4 soit modifiée sans toucher aux autres composantes (;)je N, jq
qui restent alors a 0. En choisissant g ainsi, x4 quitte les variables hors-base et de-
vient une variable de la base. Le pivot ¢ est déterminé. Nous verrons dans 'exemple
pratique plus loin que si le colt associé a une variable hors-base est positif, alors la
solution de base courante n’est pas encore optimale.

Dans la méme idée, une fois le pivot g déterminé, nous pouvons trouver p de

sorte qu’il existe un tymin tel que 2(tmin) = x 7T soit réalisable, avec zp = 0. De ce
fait, =), quitte les variables de la base et devient une variable hors-base.

D’un point de vue pratique :

Pour le choix du pivot g, le principe consiste & maximiser la fonction-objectif. De
ce fait, choisir une variable hors-base contribuant a ce besoin est de rigueur. Nous
allons donc sélectionner une variable hors-base dont le coefficient dans la fonction-
objectif est positif.

Concernant le pivot p, la conceptualisation est plus délicate, mais possible. La
relation que les solutions réalisables doivent vérifier est Ax = bavecz > 0.Soit z4 la
variable entrante. L’arrivée de x4, va augmenter la valeur de la fonction-objectif. Pour
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que la relation continue a étre vérifier, il faut qu’une variable sorte pour réduire la
valeur de la fonction. Afin de savoir laquelle sortir, nous allons augmenter =, jusqu’a
ce que I'une des variables s’annule. La premiére variable de la base a s’annuler sera
notre variable sortante.

Ar =b& Agxp + a’zy = b ol a? désigne la g-iéme colonne de A
s ap = Ag'(b—a'z,)
srp=z5;— Ag'a'z,

&I =T — Ty

avec r = Aglaq € R™, zy la solution réalisable précédente. Pour que la solution
soit réalisable, il faut que g > 0, et donc x5 — rzq > 0.

Plusieurs cas de figure se présentent alors a nous :

e Sir < 0 (toutesles composantes sont négatives), on peut augmenter =, autant
que l'on veut, on aura toujours la positivité de la variable x 5. Le critére n’est
pas majoré, on obtient max f(x) = +o0 : arrét de 'algorithme.

e Sinon, il existe au moins une composante de r telle que r; > 0. Pour avoir
la positivité (zz); — rizq > 0 pour tout ¢, on choisit la variable sortante x,
pour laquelle le rapport & B)I pouri = 1,...,m (avec r; > 0) est le plus
petit possible (correspond a a trouver la premiére Varlable qui s’annulera).

On remarque l'apparition de A3". Afin de pouvoir résoudre le simplexe par ta-
bleaux, nous allons appliquer le pivot de Gauss sur la matrice Ap. Ainsi, Agl sera

une matrice identité. De ce fait, r; est la "¢ composante de aq, et (:E B)~ devient
(zB)’L

simplement b;. Le rapport

Iindice p.

Critéres d’arrét

Soit ¢ le vecteur de cofits qui évolue tout au long de I’application du simplexe,
constitué initialement des coefficients de la fonction-objectif. L’arrét de ’algorithme
dépend de ce vecteur et de la solution réalisable. Plus spécifiquement, cela dépend si
la solution de base réalisable est dégénérée ou non.

Définition 10 (Sommet dégénéré)}

On dit qu'un sommet x est dégénéré si 'une de ses composantes est nulle.

1. Sitous les coiits sont négatifs (meilleur cas de figure), alors la solution de base
réalisable courante est 'unique optimum.
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optimum unique

F1G. 3.6 : Optimum unique.

2. Siles colts sont négatifs ou nuls, deux cas sont a prendre en compte :

(a) Sice =0etxz > 0, alors 'optimum n’est pas unique :

optimums
~\

s
A

\ Fx)=F,

max

F1G. 3.7 : Optimum non-unique.

(b) Sice =0etx. =0, alors 'optimum est unique (a priori).

Dans ce cas, la base est dite dégénérée : il existe une variable de base
nulle.

optimum unique dégénéré

F1G. 3.8 : Optimum a base dégénérée.

3. Sice > 0 et x. est non-bornée, alors la fonction-objectif n’est pas majorée.
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Théoréme 5

Si au cours de I’algorithme du simplexe, aucune base rencontrée n’est dégé-
nérée, alors 'algorithme se termine en un nombre fini d’itérations.

Choix et problémes calculatoires

Au cours de Iapplication du simplexe, certains points peuvent étre surprenants,
suscitant quelques interrogations de votre coté. Mais rassurez-vous, il y a une solu-
tion a chaque probléme! Enumérons les soucis ou interrogations que vous pourriez
avoir.

1. Sile pivot p ou g n’est pas unique, comment faire notre choix ?

Lorsque 'on permute des colonnes, une variable rentre dans la base et une
autre en sort. Dantzig a défini plusieurs critéres pour nous aider a répondre a
la question.

,—[Remarque 10 (Premier critére de Dantzig : choix du pivot q)]—

e En principe, n’importe quelle composante de x4 (avec ¢, > 0) peut
étre choisie comme variable entrante dans la base.

e S’il n’existe pas de pivot ¢ tel que ¢, > 0, la solution optimale est
trouvée et 'algorithme s’arréte.

e Dans le cas contraire, la stratégie la plus courante est de choisir le
pivot g correspondant a la composante la plus grande du vecteur
de coits. Ce choix garantit la plus grande croissance de la fonction-
objectif.

Comme dit précédemment, a partir du pivot g nous pouvons calculer le meilleur
choix pour le pivot p.
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Remarque 11 (Second critére de Dantzig : choix du pivot p)

Dans la pratique, la stratégie pour choisir le pivot p (et donc la variable

sortant de la base) est de prendre le minimum des rapports ab_i
iq

pour ¢ =
1,...,m, avec q la colonne de la variable entrante.

2. Est-ce-que 'algorithme se termine toujours?

Selon les pivots choisis, il reste possible de voir I’apparition de cycles, notam-
ment dans le cas d’une solution de base réalisable dégénérée. Ce que I’on ap-
pelle cycle estla réapparition des ensembles d’indices B et N initiaux pendant
une étape du simplexe. Heureusement, ces cycles peuvent étre évités grace a

la régle de Bland.

,—[Déﬁnition 11 (Régle de Bland)}

Lors d’un pivotage, la variable qui entre est celle d’indice minimal parmi
celles qui peuvent rentrer et la variable qui sort est celle d’indice minimal
parmi celles qui peuvent sortir :

(@) Choixde ¢:q =min{j € N|c; > 0}.

(b) Choixdep:p= min{k € B|aka = min{ X
°q

aiq

‘aik>0,i€B}}-

3. Bien que le probléme soit borné, je n’obtiens pas de solution. Pourquoi?

Deux cas de figure sont possibles :

(a) Soit les pivots ont été mal choisis.

(b) Soit une erreur s’est glissée dans le pivot de Gauss.

4. Comment démarrer le simplexe ? Faut-il calculer au hasard une solution de
base réalisable ?

Non, dans la pratique, vous considérerez que la base ne contient que les va-
riables d’écart. Ainsi, Ap sera la matrice identité, et le second membre sera
votre sommet initial. Ce sommet est réalisable, car les colonnes de Ap sont
effectivemt linéairement indépendantes.
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Application du simplexe par tableaux

Résolvons le probléme suivant :

max f(x1,x2) = 621 + 422
Soumisa: 3x1 + 92 <81

4xqy + dxo < 55

21}1 =+ T2 S 20

T1,T2 2 0

Le probleme est déja écrit sous forme d’un (LPC). Sous sa forme standard, nous
introduisons les variables d’écart afin d’obtenir des contraintes d’égalité :

max fz1,22) = 621 + 422

Soumisa: 3x1+ 9x2 +e1 =81
421 + dxo + €2 = 55
2x1 + 22 +e3 =20
T1,x2,€1,€2,€3 > 0

L’algorithme du simplexe se déroule ensuite ainsi.

Itération 1

Variables de la base  Variables hors-base

€1 €9 €3 T T2 b
1 0 0 3 9 81
0 1 0 4 5 55
0 0 1 2 1 20
0 o 0 6 4 =0
TAB. 3.1 : Variable entrante : 20" = max (6,4) = x. Variable sortante :
. 1
min (3,%,2) > o) =

Itération 2

Apreés I’étape 1, on remarque que les colonnes de z1 et es ont été interverties.

Pour obtenir ce résultat, un pivot de Gauss a été appliqué en prenant comme
pivot I’élément a l'intersection de la colonne de x; et de la ligne es. Tous les autres
éléments de la colonne x1 sont alors éliminés.

Rappelons la méthode du pivot de Gauss. Soit a . le pivot (obligatoirement non
nul), ccefficient de la ligne s colonne e :
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Variables de la base  Variables hors-base

e1 6o T e3 To b
1 0 0 -3/2 15/2 51
0 1 0 -2 3 15
0 0 1 1/2 1/2 10
0 0 0 -3 1 =60

TaB. 3.2 : Variable entrante : xg) =

. 51 15 10 (2 _
min <715/2, 3 m) = T = €9.

To. Variable sortante

1. Les éléments de la ligne s sont divisés par le pivot :

’ Asj . / bs
asj = L Yjeth, = .
Ase Ase

2. Les éléments des autres lignes (¢ # s) sont des combinaisons linéaires de
lignes pour annuler le ccefficient dans la méme colonne que le pivot :

/7 ! / /
Q3 = Qij — Qielg; et by = b; — aieby

Ainsi, la solution a chaque itération peut se lire dans la colonne de b.

Itération 3

Variables de la base  Variables hors-base

€1 To T €3 €9 b

1 0 0 7/2 -5/2 27/2
0 1 0 -2/3 1/3 5

0 0 1 5/6 -1/6 15/2
0 0 0 -11/3 -1/3 f=65

TaB. 3.3 : Tous les coiits réduits sont négatifs. L’'optimum est atteint avec

f = 65.

Au final, la solution rélisable optimale est obtenu en résolvant un systéme si-
milaire & Apxp = b. En appliquant le pivot de Gauss, nous avons transformé le
systéme de sorte a isoler zp en faisant apparaitr eune matrice identité. La solution
optimale s’obient en lisant tout simplement la colonne correspondant au vecteur b :
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*
€1
x]
5

*
€2
€3

=27/2

=15/2
=5
=0
=0

49

L’optimum de la fonction-objectif est : f(x7,x5) = 627 + 45 = 6% 15/2 4+ 4 %

5 = 65.
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Chapitre

Optimisation discrete

En optimisation discréte, certaines variables du modéle appartiennent a un en-
semble discret. Dans ce chapitre, deux domaines de optimisation discrete sont pré-
sentées : la programmation en nombres entiers, et I'optimisation combinatoire.

4.1 Programmation en nombres entiers

4.1.1 Principe général

Dans un programme en nombres entiers - aussi appelé (PLNE) - les fonctions-
objectif et les contraintes sont toujours linéaires, mais une partie ou toutes les va-
riables sont des entiers. La programmation en nombres entiers a avantage d’étre
plus réaliste que les problémes de programmation linéaire sans la contrainte d’inté-
grité, mais ont le désavantage d’étre plus difficile a résoudre. La méthode usuellement
employée consiste a résoudre une série de (LP) associés (le (PLNE) ou la contrainte
d’intégrité est relaxée) issue de la recherche d’une solution entiére.

Dans un programme en nombres entiers linéaire, nous cherchons & optimiser
une fonction linéaire soumise a un ensemble de contraintes linéaires et d’intégrité
sur un espace n-dimensionnel :

max T

Soumisa: Ax=0b
x>0
e

Si seulement certaines composantes de = appartiennent a Z, alors le probléme
est un probleme linéaire en nombres entiers mixte. Si toutes les variables prennent
les valeurs 0 ou 1, alors il s’agit d’un probléme d’optimisation binaire.
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Les problémes de gestion de stock comme celui du Sac @ dos rentrent clairement
dans cette catégorie. Par contre, il est important de remarquer qu’il ne s’agit plus
d’un simple probléeme linéaire, puisque I’ensemble de solutions admissibles n’est plus
représenté par un polyédre mais par un ensemble discret de points. Il faut ajouter la
contrainte d’intégrité. Dans ce cas, comment déterminer 'optimum ? Quatre familles
de méthodes répondent a la question :

1. Les méthodes de recherches arborescentes : Branch and Bound, algorithme de
Little pour le probléme du voyageur de commerce, de Dakin pour les (PLNE).

2. Les Méthodes de Coupe : aussi appelées méthodes de troncature, comme la
troncature de Gomory.

3. La programmation dynamique : pour les problemes de plus court chemin ou
de sac a dos.

4. Les méthodes approchées : algorithme tabou, recuit simulé, algorithme géné-
tique, colonie de fourmis.

4.1.2 Résolution par le Branch and Bound

Nous n’avons évidemment pas le temps de tout présenter. Nous avons opté par
la suite par une explication de la méthode du Branch and Bound.

Principe général

Comme son nom l'indique, la procédure se découpe en deux étapes : la sépara-
tion et I’évaluation. C’est le principe du Diviser pour régner. Les bornes sur le cott
optimal vont étre utilisées pour éviter d’explorer certaines parties de 'ensemble des
solutions admissibles.

Les deux étapes sont :

e La séparation - L’ensemble des solutions admissibles d’un probleme F' est
partitionné en une collection finie de sous-ensembles { F; }. Chaque probléme
est ensuite résolu séparément.

e L’évaluation - Pour chaque sous-probléme, une borne inférieure est calcu-
lée sur le cotit optimal du (LP) associé. En effet, la relaxation linéaire est em-
ployée. Si la solution d’un sous-probléme est entiére, le partitionnement est
inutile. Sinon, deux sous-problémes sont créés en ajoutant comme contraintes
les bornes supérieure et inférieure de la solution non-entiére.
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Exemple

max f(z1,x2) = 1021 + 50x2
Soumisa: —x1+2x2<5

x1 + 222 < 14

X1 S 8

z1,72 >0

T1,%2 € 7

PO : z0=2825

x1=45
X2 =475

F1G. 4.1 : Etape 1. Résolution du PL. La solution optimale est calculée.

7]

x1<4 x1=>5
P1:2z1=265 P2: 22 =275
x1=4 x1=5
x2=45 x2=45

F1G. 4.2 : Etape 2. Séparation en deux sous-problémes.

x1<4 x1>5
P1:21=265 | P2 |
x);1==445 x2<4 X225
P3:z3 =260 P4
x1=6 Aucune solution
x2=4 admissible

FiG. 4.3 : Etape 3. Seconde séparation en sous-problémes. Aucune solution
admissible pour Pj.
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P5:z5=240 Pé P3:z3 =260 P4
x1=4 Aucune solution x1=6 Aucune solution
X2=4 admissible X2 =4 admissible

F1G. 4.4 : Etape 4. Solution optimale trouvée en Ps.
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Annexe

Consignes de travail

Texte repris du livret APP0 de I'Ecole Polytechnique de Louvain [1].

A.1 Travailler en groupe

La formation se fait sous la forme d’APP (apprentissage par problémes). Une des
caractéristiques de cette méthode est d’optimiser la participation active de chaque
étudiant. Individuellement, chacun d’entre vous contribue selon son style et ses res-
sources a la progression efficace de la rencontre et au climat constructif des échanges.
De plus, pour faciliter le déroulement d’un tutorial, il est conseillé aux étudiants de
remplir 3 rdles spécifiques :

Animateur
+ S’assure que le groupe suit les étapes prévues,
+ Veille a ce que le contenu de la discussion soit noté par le secrétaire,
+ Anime la discussion :

- distribue la parole, suscite/sollicite la participation ou modere les inter-
ventions,

— amene le groupe a clarifier les idées développées,

— réalise des synthéses au besoin;

« S’assure du respect du timing : informe le groupe réguliérement (« il nous reste
30 minutes pour cette séance »...)
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Scribe

» Note au tableau I’essentiel des échanges (support et mémoire de la discussion
du groupe),

« Ne filtre pas les informations notées,
« Organise le tableau en fonction des étapes (de maniére a garder la trace de
toute la réflexion — ne pas effacer).
Secrétaire
» Garde une trace écrite et compléte de la production du groupe,

« Transmet cette trace a tous les membres du groupe et au tuteur.

Lors des séances, I’enseignant fait office de tuteur:
« Il ne fait pas partie du groupe d’apprenants,
« Il guide le groupe :
— Pempéche de s’égarer!
— Ulincite a aller plus loin...

« Il n’est pas la pour vous donner un cours (si c’était le cas, vous seriez tous
regroupés en auditoire),

« Il connait la réponse au probleme mais c’est a vous, étudiants, de faire le tra-
vail. Vous ne serez donc pas étonné qu’il refuse parfois de répondre directe-
ment aux questions que vous vous posez. Ce sera le cas notamment s’il estime
que cette question n’a pas été débattue préalablement au sein du groupe.

A.2 Travail individuel

Pourquoi faire du travail individuel ?

«+ Le vrai but est que tout le monde apprenne, pas uniquement que le probléme
soit bien résolu!

« Ce n’est pas le groupe qui doit devenir compétent mais bien chacun de ses
membres !

« Le travail collectif est certes important mais 'APP vise a rendre chaque étu-
diant compétent.

« Clest la raison pour laquelle chaque APP fait I'objet d’une évaluation indivi-
duelle. Le travail réalisé entre les séances de groupe est la maniére la plus effi-
cace et la plus simple de se préparer a cette évaluation. Avant la fin de chaque
probléme, chaque étudiant sera amené a présenter sa solution individuelle aux
autres membres du groupe.
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Ambiance dans le Production
groupe, climat de travail du groupe

3 4 [Implication
et expression
de chacun

Organisation 4 3
du groupe

Réalisation du travail

e Qualité des échanges
individuel convenu

F1G. A.1 : Etoile d’évaluation

A.3 Evaluation du travail en groupe (question-
naire)

A.3.1 Les axes (quelques critéres d’évaluation)

Indiquez sur chacun des 6 axes figurant sur I’étoile (figure A.1) votre niveau d’ap-
préciation générale entre 0 (« trés insatisfaisant ») et 4 (« tres satisfaisant »). Ensuite,
reliez les points.

Production du groupe. Le groupe a produit quelque chose de satisfaisant et cette
production est réellement le résultat d’un effort collectif.

Implication et expression de chacun. Chacun des participants a contribué de ma-
niere significative a l'efficacité du groupe, le groupe a donné 'occasion a cha-
cun de ses membres d’exprimer son point de vue, les participants en retrait
ont été sollicités.

Qualité des échanges. 11y eu suffisamment d’interactions entres les différents membres
du groupe, ces échanges ont permis de faire émerger des points de vue dif-
férents pour traiter le probléme, les temps de mises en commun ont permis
a chacun de confronter sa compréhension du probléme et des notions tra-
vaillées...
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Réalisation du travail individuel convenu. Les membres du groupe ont fait leur
part de travail individuel entre les séances, tous les membres du groupe ont
mené a bien leurs responsabilités...

Organisation du travail. Le groupe est parvenu a coordonner ses activités, les réunions
étaient efficaces, le groupe est resté centré sur la tiche a accomplir, le groupe a
fait suffisamment usage du tableau, le groupe s’est réparti des rdles : un secré-
taire a gardé des traces des échanges, un animateur a joué son réle, le timing
a été respecté...

Ambiance dans le groupe, climat de travail. Bonne entente entre les membres
du groupe, les participants s’aident et s’encouragent mutuellement, le groupe
est arrivé a surmonter ses divergences de vue, personne n’est arrivé a imposer
son point de vue...

A.3.2 Questions ouvertes
1. Déterminez deux points qui ont bien fonctionné pour le travail en groupe
2. Déterminez deux points qui ont mal fonctionné pour le travail en groupe

3. Quelles sont les lecons a tirer de cette expérience? Si c’était a refaire, que
feriez-vous — quel engagement prendriez-vous — pour que cela fonctionne
mieux ? Pensez aux travaux de groupe qui se présenteront prochainement du-
rant votre formation.

4. Etes-vous satisfait des connaissances ou des compétences acquises lors de la
résolution de ce probléme ? Commentaires a propos de ce que vous avez appris
en informatique.

5. Autres commentaires et suggestions a propos de ce probléme.



Annexe

Probleme 1 : Optimisation de
production de gateaux

Votre équipe va confectionner des gateaux pour la féte annuelle de ’école. On
dispose de trois recettes de gateaux qui seront réalisés, et d’un stock d’ingrédients.
Combien de gateaux de chaque doit-on préparer pour réaliser le plus de giteaux au
total ?

On dispose en tout de 3 kg de farine, 2 kg de beurre, 3 kg de sucre, 60 ceufs, 1kg
de chocolat, 15 citrons et 30 sachets de levure.

Voici les trois recettes :

Moelleux au chocolat Moelleux au citron Tarte au citron

Préparation : 10 min Préparation : 15min  Préparation : 30 min
Cuisson : 35 min Cuisson : 25 min Cuisson : 25 min
125 g de farine 180 g de farine 200 g de farine

125 g de beurre 120 g de beurre 90 g de beurre

250 g de sucre 200 g de sucre 250 g de sucre

4 ceufs 6 ceufs 4 ceufs

200 g de chocolat 1 citron Y2 3 citrons

Y2 sachet de levure 1 sachet de levure

61



62 ANNEXE B. PROBLEME 1

B.1 Travail demandé

B.1.1 Préparation

Il ne vous est pas demandé de résoudre le probléme, mais de le modéliser. Pour
cela, vous devez tout d’abord déterminer les variables du probleme (que vous pouvez
nommer comme vous le souhaitez), et le domaine de chacune d’elles. Un domaine
peut étre 'ensemble des entiers naturels N, des entiers Z, des réels R, un intervalle
(e.g., [0..10]) d’entiers ou de réels, un intervalle semi-ouvert (e.g., [1..00]) d’entiers
ou de réels, ou encore un ensemble de valeurs (e.g., {10, 15,20}).

Ensuite, déterminez s’il s’agit d’un probleme de décision ou d’optimisation. S’il
s’agit d’un probléme d’optimisation, il faut déterminer une expression numérique a
maximiser ou & minimiser (e.g., maximiser (z + y), minimiser (|z — y|), etc.)

Enfin, déterminez les contraintes de probléme. Ici, une contrainte peut étre n’im-
porte quelle expression booléenne mettant en jeu une ou plusieurs variables (e.g.,
z+y <10,z £y, zxy=2 |z —y|+ 22> 20,etc.)

S’il vous reste du temps, regardez les variantes dans la section suivante.

B.1.2 Réalisation

Réécrivez votre modéle a 'aide du langage MiniZinc et utilisez un des solveurs
fournis pour le résoudre.

B.2 Avec les courses

On reprend le probléeme précédent, les questions sont les mémes mais on ne dis-
pose pas du stock d’ingrédients. On dispose de 150 € pour faire les courses. On ne peut
acheter que des portions entiéres d’un ingrédient (par exemple la farine s’achéte par
kilogrammes)! Voici le prix des ingrédients :

Farine : 0,44 Yxkg
Beurre : 2,44 € pour une plaquette de 500 g
Sucre : 0,89 ¢kg
Eufs: 1,85€les 12 0u 0,99€les 6
Chocolat : 1,29 € la plaquette de 200 g
Citrons: 1,49€les 4
Levure : 0,20 € les 6 sachets
On peut imaginer d’autres extensions au probléme :

«+ prendre en compte un stock existant (e.g., il reste 3 kg de farine de la derniére
vente),
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« on va vendre le moelleux au chocolat a 3,70 € la part, le moelleux au citron a
3,10 € la part et la tarte a 3,20 € la part (les gateaux font tous 6 parts), on veut
maintenant maximiser le profit,

« prendre en compte le temps de préparation et de cuisson des gateaux : on ne
dispose que de 6h a trois personnes, dont une seule qui sait faire la tarte au
citron, et deux fours (il faudra peut-étre ajuster les prix de vente en consé-
quence),

- on veut imposer une variété dans les préparations (maximum 50 % d’écart
entre deux types de giteaux),

« etc.

Testez chacune de ces variantes. Pouvez-vous réaliser un modéle commun, en
permettant de paramétrer a part le stock, le prix des ingrédients? Les recettes ? Es-
sayez d’augmenter fortement le budget : quel est I'impact sur le temps de calcul ?
Essayez d’ajouter ou supprimer une recette : quel est I'impact ?
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Annexe

Probleme 2 : Création
d’emplois du temps

Votre objectif est de construire un emploi du temps pour une semaine d’ensei-
gnement dans un college miniature, disposant d’une classe par niveau (de la 6° a la
3°).

Chaque classe suit des cours, par séances d’1h 30. Les séances ont lieu de 9h a
10h 30 et de 11h a 12h 30 du lundi au samedi inclus, ainsi qu’une séance de 14h a
15h 30 les lundi, mardi, jeudi et vendredi, soit 16 séances par semaine au maximum
pour chaque classe. Voici la répartition :

Pour les 6° et les 5° :
« Francais : 4 séances par semaine
+ Anglais : 3 séances par semaine
« Mathématiques : 3 séances par semaine
+ Arts: 2 séances par semaine

« Sport : 2 séances par semaine

Pour les 4° et les 3°:
« Francais : 4 séances par semaine
+ Anglais : 3 séances par semaine

+ Mathématiques : 3 séances par semaine
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« Sciences : 2 séances par semaine
« Arts: 2 séance par semaine
« Sport : 2 séances par semaine

Chaque matiére n’est enseignée que par un seul enseignant. Le collége dispose
de cingq salles.

Proposez un modeéle pour réaliser I'emploi du temps : organisez les séances de
cours en associant une classe avec un enseignant et une salle a un horaire donné.

Extensions
Essayez d’ajouter les parameétres suivants au modéle (dans le désordre) :

« On ne propose pas deux cours identiques la méme journée,

« Les cours de sciences ne peuvent avoir lieu que dans une salle spécifiquement
équipée,
« Le sport se fait uniquement sur le terrain de football du college (que 'on consi-

deére comme une salle spécifique, ol aucun autre cours ne peut avoir lieu),

« Les enseignants d’anglais et d’arts sont a temps partiel et n’enseignent pas le
mercredi,

« Comme les 6° et les 5° n’ont que 14 séances de cours, on voudrait libérer leur
samedi matin,

« Pouvez-vous également éliminer les «trous» dans les emplois du temps des
enseigants ? Limiter le nombre de jours de présence de chaque enseignant ?

« Peut-on développer le collége en doublant le nombre de classes ? Faut-il ajou-
ter des enseignants, des salles?



Annexe D

Probleme 3 : Un étudiant de
I'TUT de Maubeuge au
supermarché. Problemes
nutritionnels en perspective ?

D.1 Sujet

Tout le monde le sait, ’arrivée a ’Age adulte conduit inexorablement a aller faire
ses courses sans maman. Cependant, votre santé n’en a que faire de votre nouvelle li-
berté, requérant un certain apport nutritionnel a chaque repas. L’objectif du probléme
de rationnement consiste a sélectionner un ensemble d’aliments satisfaisant les Ap-
ports Journaliers Recommandés a un coiit minimum. Les contraintes du probleme
ne prennent évidemment pas en compte l'intégralité des nutriments existants, mais
le principe reste identique. Il vous faudra composer un menu a moindre cotit, dans
lequel le nombre de calories et 'ensemble des nutriments seront présents en quantité
satisfaisante. Vous vous servirez des données fournies dans I’annexe.

D.2 Préparation
Votre travail de préparation consiste a formuler mathématiquement le probléme :
1. identifiez les variables du probléme,
2. définissez la fonction-objectif,

3. formulez les contraintes a satisfaire,
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4. mettez la formulation sous forme matricielle.

Descriptif des contraintes : pour bien fonctionner, un corps humain doit disposer
d’assez d’énergie, mais a contrario ne peut assimiler une ration de calories supérieure
a un seuil sous peine d’augmenter sa masse adipeuse. Le principe est identique pour
les nutriments : au-dela d’une certaines dose, méme les vitamines peuvent se révéler
toxiques.

1. Tout d’abord, vous assimilerez la méthode du simplexe en 'appliquant sur ce
probléme en considérant :

« Parmi les aliments : chips, pizza, céréales;

« Parmi les contraintes : calories, vitamine A.

Quelle solution obtenez-vous (rations et coiit) ?

2. Vous vous rendez compte en faisant vos courses que vous ne pourrez pas for-
cément tout stocker. Modifiez le modéle en tenant compte du fait que vous ne
pouvez stocker plus de 5 exemplaires de chaque aliment.

3. Cette fois-ci, toutes les contraintes et les aliments a votre disposition sont a
considérer. Adaptez votre formulation pour en tenir compte.

4. Jusqu’a présent, vous avez optimisé le colt, ce qui peut sembler raisonnable
du point de vue du portefeuille, mais mauvais pour votre santé. Proposez une
fonction permettant d’améliorer votre menu en diversifiant au maximum les
produits.

D.3 Réalisation individuelle

Reprenez les formulations mathématiques des questions précédentes, et implémentez-
les avec Minizinc, puis Scilab. Quels régimes obtenez-vous ? Pour quels cotits ?

D.4 Annexe

Dans ses toolboxes, Scilab fournit différentes méthodes d’optimisation. Celles qui
nous intéressent ici concerne les problémes d’optimisation linéaire et quadratique.
Les fonction linpro et quapro nous aideront dans la résolution. Pour connaitre le pro-
totype de la fonction linpro par exemple, écrivez dans la consolehelp (' 1inpro').
Sile module n’est pas installé, lancez dans la console Scilab: atomsInstall (' linpro').
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Unité Minimum Maximum

Calories cal 2000 2500
Cholesterol mg 0 300
Matiere grasse g 40 90
Protéine g 50 100
Vitamine A Ul 2000 50000
Vitamine C Ul 50 20000
Calcium mg 800 1600

Fer mg 10 30

Tas. D.1: Apports nutritionnels

Cotit par ration

Brocolis 0,16
Carottes rapées 0,07
Salade 0,02

Pommes de terre 0,06
Poulet 0,84

Bananes 0,15

Raisins 0,32

Oranges 0,15

Pain 0,06

Beurre 0,05
Camembert 0,25
Beeuf 0,27

Jambon 0,33
Céréales 0,28

Pizza 0,44

Couscous 0,39

Riz blanc 0,08
Cotelettes de porc 0,81
Sardines a I'huile 0,45
Chips 0,19

Yaourts 0,20

Haricots verts 0,75

TaB. D.2 : Cout et capacité de stockage des aliments
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Calories Cholesterol ~Matiere grasse Protéine Vitamine A Vitamine C Calcium Fer

Brocolis 73,8 0,0 0,8 8,0 5867,4 160,2 159,0 2,3
Carottes rapées 23,7 0,0 0,1 0,6 15471,0 5,1 149 03
Salade 2,6 0,0 0,0 0,2 66,0 0,8 38 0,1
Pommes de terre 171,5 0,0 0,2 3,7 0,0 15,6 22,7 4,3
Poulet 2774 129,9 10,8 42,2 77,4 0,0 21,9 1.8
Bananes 104,9 0,0 0,5 1,2 92,3 10,4 6,8 04
Raisins 15,1 0,0 0,1 0,2 24,0 1,0 34 0,1
Oranges 61,6 0,0 0,2 1,2 268,6 69,7 524 0,1

Pain 65,0 0,0 1,0 2,3 0,0 0,0 26,2 0,8

Beurre 725,0 250,0 83,0 0,7 2499,0 0,0 15,0 0,1
Camembert 112,7 29,4 9,3 7,0 296,5 0,0 202,0 0,2
Boeuf 141,8 27,4 12,8 54 0,0 10,8 90 0,6
Jambon 37,1 13,3 1,4 55 0,0 7,4 2,0 02
Céréales 110,5 0,0 0,1 2,3 1252,2 15,1 0,9 1,8
Pizza 181,0 14,2 7,0 10,1 281,9 1,6 64,6 09
Couscous 100,8 0,0 0,1 3,4 0,0 0,0 72 03

Riz blanc 102,7 0,0 0,0 0,3 2,1 0,0 0,0 79
Cotelettes 710,8 105,1 72,2 13,8 14,7 0,0 59,9 04
Sardines 49,9 34,1 2,7 5,9 53,8 0,0 91,7 0,7
Chips 139,2 0,0 9,2 2,2 61,5 9,6 14,2 05

Yaourts 70,0 5,0 3,5 4,1 4,0 0,0 151,0 0,1
Haricots verts 31,0 0,0 0,1 1,8 108,0 24,3 307,0 1,0

TaB. D.3 : Information nutritionnelle par aliment
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Annexe

Probleme 4 : Location de sites

E.1 Sujet

Considérons un autre probléme bien connu de 'optimisation combinatoire : I'étude
d’emplacement de sites. Une entreprise d’informatique posséde 4 usines qui produisent
des cartes-meres. La compagnie fonctionnant bien, elle aimerait aller plus loin en
concevant dorénavant son propre ordinateur. Le tableau E.1 ci-dessous contient : les
colts fixes, variables, et les capacités hebdomadaires pour chaque site, ainsi que les
productions hebdomadaires de chaque usine. Les cofits variables sont en euros par
semaine, et incluent les frais de transport. Les cofits fixes sont en euros par an. Les
quantités de production et de capacité sont en tonnes par semaine.

Vous devez faire face a deux problémes distincts :

« combien de tonnes de matériel chaque usine doit envoyer a chaque site par
semaine ?

« chaque site a-t-il son utilité ?

L’objectif est clair : minimiser les cotits. La premiere question correspond aux
problémes de programmation linéaire a variables continues que vous avez déja ren-
contré. La seconde fait intervenir des variables entieres, d’ou I'appelation de pro-
grammation linéaire en nombres entiers.

E.2 Préparation
Votre travail de préparation consiste a formuler mathématiquement le probleme :
1. identifiez les variables du probléme,

2. définissez la fonction-objectif,

71



72 ANNEXE E. PROBLEME 4

Site 1 Site 2 Site 3 Production

Coiits variables — Usine 1 25 20 15 1000
Cofts variables — Usine 2 15 25 20 1000
Cofts variables — Usine 3 20 15 25 500
Colits variables — Usine 4 25 15 15 500

Cotits fixes 500000 500000 500000
Capacité 1500 1500 1500

TaB. E.1: Données sur les capacités et les cofits des sites

3. formulez les contraintes a satisfaire,
4. mettez la formulation sous forme matricielle.

Descriptif des contraintes : chaque usine est sujette a une certaine production. Cette
production devra bien aller quelque part. En outre, il faut prendre en compte la possibilité
qu’un site soit ou non ouvert.

1. Tout d’abord, appliquez la méthode du simplexe pour résoudre ce probleme.
Vous relaxerez la contrainte d’intégritté, obtenant de ce fait un probléme li-
néaire (PL) et répondrez aux questions ci-dessous. On considére que la pro-
duction arrivant sur un site ne provient que d’une seule usine.

(a) Quel estlavaleur de la fonction-objectif et quels sites doivent étre construits ?

(b) Cette solution est-elle directement utilisable comme solution optimale
pour le PLNE?

2. L’idée consiste a appliquer un Branch & Bound pour trouver la solution entiére
optimale. Tout d’abord, entrainez-vous en cherchant la solution optimale en-
tiére sur le probleme indépendant suivant :

max flx1,22) =521+ 422
Soumisa x1 +x2 <5
10- 21+ 622 <45
1,72 > 0

Vous pourrez vous appuyez sur un graphique pour trouver la solution du pro-
gramme linéaire et éliminer les branches n’apportant pas de solution.

3. Considérons un PLNE et son PL obtenu en relachant la contrainte d’intégrité.
Répondez par VRAI ou FAUX aux questions suivantes en justifiant par du texte
ou un graphique :

(a) Sile PLNE est un probléme de minimisation, la valeur de la fonction-
objectif est supérieure ou égale a la valeur de la fonction-objectif du PL.
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4.

E.3

(b) Sile PL est insatisfaisable, le PLNE aussi.

(c) Sitoutes les variables du PL sont des entiers, il s’agit de la solution op-
timale du PLNE.

Dans cette question, vous allez chercher la solution du PLNE du probléme ini-
tial en vous appuyant sur la programmation par contraintes. Vous minimiserez
tout d’abord le nombre de sites ouverts, puis les coiits engendrés (Généralisez
le programme pour pouvoir modifier aisément le nombre de sites, d’usines et
les cofits).

(a) Comment évolue le cotit?

(b) Quels sites doivent étre construits dans ce cas?

Réalisation individuelle

L’ensemble des formulations prédédemment établies sont a implémenter avec
Scilab. Donnez les valeurs des coits et des variables dans chaque cas.

L’algorithme du Branch & Bound n’existe pas par défaut dans Scilab. Utilisez
la programmation par contraintes avec Minizinc pour répondre a la question
du PLNE. Vérifiez vos résultats obtenus par le calcul.

E.4 Annexe

Dans ses toolboxes, Scilab fournit différentes méthodes d’optimisation. Celle qui
nous intéresse ici concerne les problémes d’optimisation linéaire. La fonction linpro
nous aidera dans la résolution. Pour connaitre le prototype de la fonction, écrivez
dans la console help ('linpro"').
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