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Avant Propos

Ce polycopié correspond au cours de probabilités enseigné par les auteurs en troisiéme
année dans les départements INFORMATIQUE et TELECOMMUNICATION SERVICES ET
USAGES de 'INSA de Lyon.

Ce cours est un cours de probabilités élémentaires dont les pré-requis sont les notions
d’analyse de premier cycle. Aucune connaissance de la théorie de la mesure et de l'in-
tégrale de Lebesgue n’est requise. Ces notions sont néanmoins indispensables pour une
formalisation mathématique compléte d’une probabilité sur un univers continu. Ceci nous
a amené dans ce cours a admettre sans démonstration un certain nombre de résultats
concernant les probabilités sur un univers continu et a les considérer comme une généra-
lisation de résultats établis dans le cas d’un univers dénombrable.

Tout commentaire concernant ce polycopié sera recueilli avec intérét a 'une des adresses
suivantes :

Stéphane Balac Olivier Mazet

Centre de Mathématiques Centre de Mathématiques
INSA de LYON INSA de LYON

21 avenue Capelle 21 avenue Capelle

69621 Villeurbanne 69621 Villeurbanne

stephane.balac@insa-lyon.fr olivier.mazet@insa-lyon.fr






Introduction

« Assurances, diagnostic médical, définition du risque nucléaire, produits financiers vir-
tuels aussi bien que sondages, prévisions météorologiques ou économiques, fiabilité des
installations industrielles sont des champs d’application de la science du hasard. Sans
théorie des probabilités il ne serait pas possible de formaliser les mécanismes de la géné-
tique, pas plus que la mécanique quantique ou la thermodynamique. Dans le domaine des
sciences sociales, le poids de ces mathématiques n’a cessé de grandir ; des choix politiques
importants concernant les technologies ou 1’économie sont soumis & des analyses fondées
sur le calcul des probabilités. C’est pourquoi les notions clés de la théorie des probabilités
doivent faire partie de notre culture.»*

Le propos de ce cours est donc de présenter les bases de la théorie des probabilités, et de
définir les principaux outils de modélisation qui en découlent.

Les préoccupations de modélisation des jeux de hasard sont fort anciennes. (Hasard : mot
d’origine arabe signifiant «jeu de dés»). Il s’agissait de quantifier et de prédire, dans le
but évident de gagner! Pascal fut le premier & élaborer une théorie des jeux, qui a évolué
ensuite en théorie des probabilités avec Laplace, Gauss, Poisson au XVIII® siécle, puis
Poincaré, Borel, Lévy et Kolmogorov au XX¢ siécle.

De nos jours, des outils trés divers de la théorie des probabilités s’appliquent dans diffé-
rents domaines : Analyse (théorie du potentiel), Physique (Mécanique Statistique), Géné-
tique (Chaines de Markov cachées), Informatique (Chaines de Markov, reconnaissance de
forme), Economie (mathématiques financiéres), etc.

La théorie des probabilités constitue un outil puissant de modélisation mathématique. Un

modeéle s’applique sur le réel percu, d’'une part pour quantifier, d’autre part pour prédire.

Dans le cas des probabilités, la théorie vise & modéliser le hasard, ou autrement dit les

phénomeénes aléatoires, 'imprévisible.

Il existe deux maniéres de construire un modeéle :

— Maniére inductive, fondée sur ’expérience passée, sans en comprendre forcément les
causes.

— Maniére déductive, en analysant les causes «physiques».

Dans le premier cas, les probabilités utilisent les statistiques, pour déterminer les lois

sous-jacentes. Exemple : quelle est la probabilité que la premiére naissance de I’an 2020

sur la commune de Lyon soit un garcon? On sait «par expérience» que celle-ci est tres

proche de %, mais on connait trés mal les «causes» de ce résultat, qui sont comprises dans

un processus biologique complexe.

Dans le deuxiéme cas, le raisonnement déterministe dit que connaissant les conditions

initiales, on est capable de connaitre les conditions finales. Mais la somme et la complexité

!Didier DACUNHA-CASTELLE, Chemins de l’aléatoire, Champs-Flammarion, 1996.



d’enchainement de phénoménes déterministes aménent la pertinence de la modélisation
aléatoire. Exemple : lacher d’une piéce de monnaie de 1 mm de hauteur, puis de 1 m.
Dans le premier cas, il est fort aisé de prédire le résultat, contrairement au second, alors
que les lois physiques et mécaniques mises en cause sont les mémes !
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Chapitre 1

Rappels d’analyse combinatoire

1 Notions de dénombrement

Pour une grande partie des calculs de probabilités discrétes, on cherche a calculer le
nombre d’événements réalisables, le nombre d’événements favorables, etc. D’otul la nécessité
d’utiliser des outils de dénombrement et de combinatoire. Dans tout ce paragraphe E
désigne un ensemble a n éléments que I'on suppose distinguables.

1.1 Permutations

DEFINITION 1 On appelle permutation desn éléments de l’ensemble E toute disposition
ordonnée de ces n éléments.

REMARQUE Deux permutations ne différent donc que par ’ordre des n éléments distincts
qui la composent.

Le nombre de permutations de n éléments est le nombre de maniéres possibles d’ordonner
ces n éléments.

EXEMPLE Les permutations de ’ensemble {1, 2,3} sont (1, 2, 3), (1, 3,2), (2,1, 3), (2,3, 1),
(3,1,2), (3,2,1).

PROPOSITION 1 Le nombre de permutations d’un ensemble a n éléments est n!.

DEMONSTRATION On démontre ce résultat par récurrence : il y a 1! maniére de permuter
1 élément. Supposons qu’il y en a (k — 1)! pour la permutation de k£ — 1 éléments. Alors
étant donnés k£ éléments, on en choisit 1 parmi k, ce qui donne k possibilités, et il reste
k — 1 éléments a ordonner, soit (k — 1)! possibilités. Le total fait donc k(k — 1)! = kL.

Par convention, on pose 0! = 1. o]

EXEMPLE DE REFERENCE : dans une urne contenant n boules distinguables (numérotées),
on tire les n boules 'une aprés I'autre (on s’intéresse a l'ordre), sans les remettre dans
I'urne (on n’autorise pas de répétition). Le nombre de tirages possibles est le nombre de
permutations de ’ensemble {1,2,...,n}, c’est-a-dire n!.
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1.2 Arrangements sans répétition

DEFINITION 2 On appelle arrangement sans répétition de p éléments pris parmi les n
éléments d’un ensemble E, toute disposition ordonnée de p éléments de E.

REMARQUE Un arrangement de n éléments pris parmi les n éléments d'un ensemble E
est une permutation. Dans un arrangement, on se contente de p éléments pris parmi les n.

EXEMPLE Les arrangements a 2 éléments de I’ensemble {1, 2, 3} sont (1, 2), (1,3), (2,1),
(2,3), (3,1), (3,2).

PROPOSITION 2 Le nombre d’arrangements sans répétition de p éléments pris dans un
ensemble a n éléments est
n!

A’n’zm:nx(n—l)x---x(n—p+1).

DEMONSTRATION Il y a n facons de choisir le 1°* élément de l'arrangement parmi les
n éléments de l’ensemble. Pour le 2¢ élément de ’arrangement, il y a n — 1 facons de
le choisir (puisqu’il ne doit pas y avoir répétition d’un élément). En itérant, on vérifie
qu’il y a n — p + 1 fagons de le choisir p°® élément de 'arrangement. Au total le nombre
d’arrangement est donc n(n —1)...(n —p+1). 0

EXEMPLE DE REFERENCE : dans une urne contenant n boules distinguables (numérotées),
On tire les p boules I'une aprés I'autre (on s’intéresse a 1'ordre), sans les remettre dans
I'urne (on n’autorise pas de répétition). Le nombre de tirages possibles est le nombre
d’arrangements sans répétition a p éléments de I'ensemble {1,2,... ,n}, c’est-a-dire AP.

1.3 Combinaisons sans répétition

DEFINITION 3 On appelle combinaison sans répétition de p éléments pris parmi les n
éléments d’un ensemble E toute disposition non ordonnée de p éléments de F.

REMARQUE Deux combinaisons ne différent que par la nature des éléments qui la com-
posent (l’ordre de ces éléments est indifférent).

EXEMPLE Les combinaisons a 2 éléments de ’ensemble {1, 2,3} sont {1, 2},{1, 3}, {2, 3}.

PROPOSITION 3 Le nombre de combinaisons sans répétition de p éléments pris dans

un ensemble a n éléments est |
n!

[ e —
" p!(n—p)
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DEMONSTRATION Considérons dans un premier temps le nombre d’arrangements sans
|

répétition de p éléments pris parmi n éléments : AP = 7. Pour une combinaison de

(n—p)!
p éléments donnée, il y a p! arrangements différents de ces p éléments (correspondant au
nombre de permutations des p éléments de la combinaison).

Le nombre de combinaisons sans répétition de p éléments pris parmi n éléments est donc
P
AL n!

Pl pl(n—p)

PROPOSITION 4 On a les propriétés suivantes :

|
- or=0rr=—"" _ Y(np) eN.
pl(n —p)!
-~ CP=CP{+CP_, VY(n,p) €N,

n

~ Formule du binéme : Vn € N,V(a,b) € R?,

(a+b)" = Z CFakpnF,

k=0

EXEMPLE DE REFERENCE : dans une urne contenant n boules distinguables (numéro-
tées), on tire p boules simultanément (par conséquent sans ordre et sans répétition). Le
nombre de tirages possibles est le nombre de combinaisons sans répétition a p éléments
de ensemble {1,2,...,n}, c’est-a-dire CZ.

1.4 Arrangements avec répétition

DEFINITION 4 On appelle arrangement avec répétition de p éléments pris parmi les n
éléments d’un ensemble E toute disposition ordonnée de p éléments, non nécessairement
distincts, de E.

EXEMPLE Les arrangements avec répétition & 2 éléments de ’ensemble {1,2,3} sont
(1,1),(1,2),(1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3).

PROPOSITION 5 Le nombre d’arrangements avec répétition de p éléments pris dans un
ensemble a n éléments est nP.

DEMONSTRATION Il y a p facons de choisir chacun des éléments de ’arrangement parmi
les n éléments de 1’ensemble. Au total le nombre d’arrangement avec répétition est donc
nxXnX...xn=np 0]

p fois

S. BALAC & O. MAZET - Introduction aux Probabilités 3



CHAPITRE 1. RAPPELS D’ANALYSE COMBINATOIRE

EXEMPLE DE REFERENCE : dans une urne contenant n boules distinguables (numéro-
tées), on tire p boules 'une aprés 'autre (on s’intéresse a l’ordre), en les remettant dans
I'urne aprés chaque tirage (on accepte les répétitions). Le nombre de tirages possibles
est le nombre d’arrangements avec répétition a p éléments de Iensemble {1,2,... n},
c’est-a-dire nP.

1.5 Combinaisons avec répétition

DEFINITION 5 On appelle combinaison avec répétition de p éléments pris parmi les n
éléments d’un ensemble E toute disposition non ordonnée de p éléments, non nécessai-
rement distincts, de F.

EXEMPLE Les combinaisons avec répétition a 2 éléments de ’ensemble {1,2,3} sont

{1,1},4{1,2},{1,3},{2,2},{2,3},{3,3}.

PROPOSITION 6 Le nombre d’arrangements avec répétition de p éléments pris dans un

s Gl P
ensemble a n éléments est C; ., ;.

EXEMPLE DE REFERENCE : dans une urne contenant n boules distinguables (numéro-
tées), on tire p boules en les remettant dans I'urne aprés chaque tirage (on accepte les
répétitions). On ne s’intéresse pas a 'ordre d’apparition des coules. Le nombre de ti-
rages possibles est le nombre de combinaisons avec répétition a p éléments de I’ensemble

{1,2,...,n}, cest-a-dire C}, , ;.

1.6 Permutation avec répétition

DEFINITION 6 Supposons que les n éléments de [’ensemble E se répartissent en £ ca-
tégories : il y a ny éléments du type 1, ny éléments du type 2, ..., ng éléments du type £
(avec ny +no + ... +ng=n).

On appelle permutation avec répétition de n éléments de [’ensemble E toute disposition
ordonnée de n éléments ou figure ny fois un élément du type 1, ny fois un élément du
type 2, ..., et ny fois un élément du type /.

REMARQUE La permutation avec répétition n’est pas un cas particulier d’arrangement

avec répétition, contrairement au cas «sans répétition». La «répétition» n’agit pas dans

le méme contexte pour permutation et arrangement.

— Dans le cas des permutations, «répétition» signifie qu'un type d’élément donné de ’en-
semble F peut étre présent plusieurs fois.

— Dans le cas d’arrangements, «répétitiony» signifie qu’'un méme élément de I’ensemble F
peut étre réutilisé plusieurs fois.

S. BALAC & O. MAZET - Introduction aux Probabilités 4
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PROPOSITION 7 Le nombre de permutations avec répétition des n éléments de [’en-
semble E (se répartissant en ¢ catégories de la maniére suivante : ny éléments du type
1, ny éléments du type 2, ..., et ny éléments du type ¢, avec ny +ng + ...+ ng=n) est

n!

nyl X - X !

DEMONSTRATION Il y a en effet n! permutations différentes des n éléments de ’ensemble.
Pour obtenir le nombre de permutations avec répétition, il faut considérer le fait que les
éléments d’un méme type vont fournir une méme permutation. Or le nombre de permuta-

tions identiques fournies par les éléments de type & est ng! (nombre de permutation de ces
n!

ny éléments). Au total le nombre de permutations avec répétition est donc 3 T
nyg. Tt Ty

o

EXEMPLE DE REFERENCE : dans une urne contenant n boules de £ couleurs différentes se
répartissant de la maniére suivante : n; boules de la couleur ¢;, no boules de la couleur ¢y,
..., ng boules de la couleur ¢, (avec ny +ng+...4+n, = n), on tire les n boules I'une aprés
l'autre (on s’intéresse a I'ordre), sans les remettre dans I'urne (la répétition joue au niveau

des couleurs). Le nombre de tirages possibles distincts est le nombre de permutations des
n!

ces n boules avec répétition des £ couleurs, c’est-a-dire .
ny! X - x ny!

EXERCICE Quel est le nombre de mots de 6 lettres que 'on peut former & partir des
lettres A G E R E A? (on ne s’intéresse pas au sens du mot!)

1.7 Pratique du dénombrement

Soit une expérience aléatoire £ composée de r expériences successives, la 1™ pouvant
produire un résultat quelconque parmi n; résultats possibles, et la 2° pouvant produire
un résultat quelconque parmi no résultats possibles, et ainsi de suite, la r® pouvant
produire un résultat quelconque parmi n, résultats possibles. Le nombre total de résultats
possibles pour I'expérience aléatoire £ est égal au produit ny X ng X --- X n,.

Autrement dit, le nombre de «choix» possibles pour une expérience aléatoire consistant
a faire «un choix» et «un choix» est obtenu en effectuant le produit du nombre de ces
choix.

ExXEMPLE Calculons le nombre de plaques minéralogiques distinctes disponibles par dé-
partement dans la numérotation «4 chiffres, 2 lettresy.

On choisit donc 4 chiffres parmi 10 avec ordre et avec remise et on choisit 2 lettres parmi
26 avec ordre et avec remise. Le nombre total de possibilités est égal au produit 10* x 262,
soit 6 760 000.

S. BALAC & O. MAZET - Introduction aux Probabilités 5



CHAPITRE 1. RAPPELS D’ANALYSE COMBINATOIRE

Si une expérience aléatoire £ peut étre réalisée de r maniéres différentes, la 1™ fournissant
ny résultats distincts possibles, la 2° fournissant ny résultats distincts possibles, etc, la
r® fournissant n, résultats distincts possibles, alors le nombre total de résultats possibles
pour ’expérience aléatoire £ est égal a la somme 1y + ny + ... + n,.

Autrement dit, le nombre de «choix» possibles pour une expérience aléatoire consistant
a faire «un choix» ou «un choix» est obtenu en effectuant la somme du nombre de ces
choix.

EXEMPLE Dans une urne contient 49 boules numérotées de 1 & 49, on tire simultanément
6 boules. Calculons le nombre de tirages possibles ayant (au moins) 5 numéros entre 1
et 6.

Au moins 5 bons numéros c’est exactement 5 «bons» numéros ou exactement 6 «bons»
numéros. Il y a 1 seul tirage donnant 6 numéros entre 1 et 6. Le nombre de tirages
possibles avec exactement 5 «bons» numéros est CgCj; (on choisit sans ordre et sans remise
5 numéros parmi les 6 «bons» numeéros et on choisit 1 numéro parmi les 43 «mauvais»
numéros). Au total, il y a 1 4+ C2Cj, tirages possibles.

EXERCICE Un probléme de dénombrement qu’a résolu PASCAL dans sa correspondance
avec le CHEVALIER DE MERE, est relatif au jeu de «passe-dix» qui se joue avec 3 dés.
L’un des joueurs parie que le total des points dépassera 10 («passe-dix» ), 'autre qu’il sera
inférieur ou égal & 10. Les chances des deux joueurs sont égales. Le CHEVALIER DE MERE
avait observé que le joueur qui parie pour «passe-dix» gagne plus souvent en obtenant 11
points qu’en obtenant 12 points. Or objectait DE MERE, on peut obtenir 11 points de six
maniéres différentes

(6,4,1),(6,3,2),(5,5,1),(5,4,2),(5,3,3), (4,3, 3),
et on peut également obtenir 12 points de six maniéres différentes
(6,5,1),(6,4,2),(6,3,3),(5,5,2),(5,4,3), (4,4, 4).

On devrait donc obtenir aussi souvent 11 points que 12 points en observant un grand
nombre de parties.

La réponse de PASCAL était fort simple ... et mettait en évidence une erreur de modéli-
sation. Pourriez-vous & votre tour répondre au CHEVALIER DE MERE ?

1.8 Tirages

La physique (cinétique des gazs, physique nucléaire, .. .) fait largement appel aux modéles
probabilistes. Ces modeéles font souvent référence aux tirages de boules dans des urnes.
On considére une urne de n boules distinguables ol on effectue p tirages successifs. Com-
bien y a t-il de tirages possibles?

| | Sans remise | Avec remise |

Avec ordre AP n?
Sans ordre Cr c?

+p—1
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SECTION 2. RAPPELS DE THEORIE DES ENSEMBLES

La signification de la notion de remise est claire. La notion d’ordre revient a différencier
toutes les combinaisons des p mémes boules tirées, en tenant compte de I'ordre dans lequel
elles ont été tirées.

2 Rappels de théorie des ensembles

Nous renvoyons aux ouvrages de cours de mathématiques de premier cycle'pour un ex-
posé détaillé des résultats de la théorie des ensembles. Nous nous contenterons dans ce
paragraphe de rappeler les principales propriétés qui seront utilisées dans la suite de ce
cours.

2.1 Sous-ensembles

DEFINITION 7 Soient A et B deux ensembles. On dit que A est inclus dans B et on
note A C B si tout élément de A appartient a [’ensemble B. L’ensemble A est alors
qualifié de partie ou de sous-ensemble de [’ensemble B.

Pour signifier que A n’est pas inclus dans B, on note A & B.

REMARQUE Pour que ’ensemble A ne soit pas inclus dans B, il faut et il suffit qu’il
existe un élément de A qui n’appartienne pas & B. (Par exemple N § R*.)

L’ensemble vide est inclus dans tout ensemble.

Un ensemble est inclus dans lui-méme.

PROPOSITION 8 La relation d’inclusion est une relation d’ordre, c’est-a-dire si A, B et
C sont trois ensembles, alors

- ACBetBCC = AcCC (propriété de transitivité).

- AC B et BC A= A= B (propriété d’antisymétrie).

- A C A (propriété de réflexivité).

DEFINITION 8 Soient A et B deux ensembles. On dit que les ensembles A et B sont
égaux et on note A = B si tout élément de l'un des ensembles appartient o [’autre
ensemble. Autrement dit, A = B signifie que A C B et B C A.

DEFINITION 9 Un ensemble Q2 est dit fini lorsque le nombre d’éléments qui le com-
posent est un entier naturel. Dans ce cas, le nombre d’éléments est appelé cardinal de
l’ensemble et est noté Card (), ou #, ou |Q].

!Par exemple «Algébre et analyse, cours de mathématiques premiére année avec exercices corrigésy,
S. Balac et F. Sturm, Presses Polytechniques et Universitaires Romandes, Coll. INSA de Lyon, 2003.
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Un ensemble qui n’est pas fini est dit infini. On appelle singleton un ensemble composé
d’un seul élément. L’ensemble vide est 1’ensemble qui ne contient aucun élément. On le
note (). Par convention, Card()) = 0.

PROPOSITION 9 Si A C B alors Card(A) < Card(B).

DEFINITION 10 Un ensemble est dit dénombrable s’il existe une bijection entre cet
ensemble et [’ensemble des entiers naturels N.

DEFINITION 11 Soit Q) un ensemble. Les sous-ensembles de S définissent un ensemble
appelé ensemble des parties de Q) et noté P(S2). Il y équivalence entre les assertions

AEP(Q) et ACQ.

REMARQUE P(2) contient toujours @) et €. Attention, les éléments de P(2) sont des
sous-ensembles de {2 et non pas des éléments de (2.

EXEMPLE Si Q = {a,b,c} alors P(Q2) = {0,{a}, {b},{c},{a,b},{a,c},{b,c}, {a,b,c}}.
Est-on certain d’avoir énuméré tout les éléments de P(2) 7 Oui, car ...

PROPOSITION 10 Soit Q un ensemble fini de cardinal n. L’ensemble P(Q2) des parties
de Q) est alors de cardinal 2".

DEMONSTRATION Effectuons un peu de dénombrement. Il y a 1 ensemble ayant 0 élément,
c’est I’ensemble vide. Puisque Card(2) = n, il y a n singleton (ensemble ayant 1 élément).
De fagon générale, le nombre d’ensembles ayant k£ éléments correspond au nombre de

possibilités de choisir k£ éléments parmi les n éléments de ’ensemble €2, ceci sans ordre et
n!

H(n —k)! sous-ensembles de k£ éléments. Ainsi,

sans remise. I y a donc CF =

Card(P(Q2)) = z": ck.

Or d’aprés la formule du binéme de Newton, pour tout réel z et y on a

n

(z+y)" =) Chafy™ .
k=0

Si 'on prend x =1 et ¥y = 1 on obtient,

n

(x4+y)"=2"= ZCﬁ

k=0

Le résultat est ainsi démontré. o]
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Si A est un ensemble, on note I 4 la fonction indicatrice de ’ensemble A définie par

1 size A

HA(‘”):{O sizg A

2.2 Réunion et Intersection

DEFINITION 12 Soient Q0 un ensemble et A, B deuzr sous-ensembles de §2. La réunion
des 2 ensembles A et B notée AU B est l’ensemble constitué par les éléments de €2
appartenant a A ou o B. Autrement dit

AUB={weQ, we A ouw € B}.

L’intersection des 2 ensembles A et B notée A N B est l’ensemble constitué par les
éléments de Q appartenant a A et a B. Autrement dit

ANB={we, we A etw e B}.

Si AN B =0, on dit que les ensembles A et B sont disjoints.

On utilise le symbole U, pour indiquer la réunion de 2 ensembles disjoints. On note
n
ﬂAi = A N..N A,
i=1

et

=1

PROPOSITION 11 Soient A et B deux ensembles finis. On a
Card(A U B) = Card(A) + Card(B) — Card(A N B).
St A et B sont disjoints, on a

Card(A Uy B) = Card(A) + Card(B).
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PROPOSITION 12 On a les propriétés suivantes pour ['intersection et la réunion :
— Ce sont des lois de composition interne :

si A€ P(Q) et BeP(Q), alors ANB € P(Q) et AUB € P(Q).
— Ces lois sont commutatives :

VA, B € P(Q2) ANB=BnNA, AUB=BUA.

— Ces lois sont associatives :
1.VA,B,C e P(Q2) (ANB)NC=ANn(BNC)=AnBNC,
2.VA,B,C e P() (AUB)UC=AU(BUC)=AUBUC.

— 0 est élément neutre pour l'union et Q est élément neutre pour 'intersection :
VAeP() AUul=AetANQ=A.

— L’intersection est distributive sur la réunion
n n
i=1 i=1
et la réunion est distributive sur l’intersection

i=1

REMARQUE Il existe des correspondances entres les opérateurs ensemblistes et les opé-
rateurs logiques suivants : et, ou, d et V
-~ (weAetweB)<—=weANB

- (wWweAouweB)«<—=we AUB

—we(NAi<=Vie{l,...,n}weE 4

=1

waUAi(:)HiE{l,...,n}wEAi

i=1

2.3 Ensemble complémentaire

DEFINITION 13 Soient ) un ensemble et A un sous-ensemble de 1. On appelle com-
plémentaire de A dans (2, et on note CqA ou A ou A€, l’ensemble constitué des
éléments de ) qui n’appartiennent pas a A. Autrement dit,

CQA:{LUEQ, wgéA}

Lorsqu’il n’y aura pas d’ambigiiité sur l’ensemble ) de référence, nous utiliserons de
préférence la notation A°C.
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PROPOSITION 13 Soient A et B deux sous-ensembles de 2. On a les propriétés sui-
vantes :

- (A9 =A.

—Pe=Q,0=0.

—ANA=0, AUA=Q .

- (ANB)=A°UB°et (AUB)* = A°N B°.

- AC B= B°C A

— Card(A°) = Card(2) — Card(A).

DEFINITION 14 Soient A, B deur sous-ensembles d’un ensemble 2. On appelle diffé-
rence des ensembles A et B, et on note A\ B, l’ensemble constitué des éléments de
A qui n’appartiennent pas a B. Autrement dit,

A\B={weQ, weAetw¢ B} =AnN B".
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Chapitre 2

Fondements de la théorie des
Probabilités

Dans ce chapitre, nous allons progressivement définir les concepts et outils de construction
d’un modéle probabiliste.

1 Espace d’événements

1.1 Univers

On appelle ensemble des possibles, ou ensemble des éventualités, ou encore univers, ’en-
semble () des résultats possibles d’une expérience aléatoire. Les éléments w de €2 sont
appelés issues, ou événements élémentaires, ou encore épreuves de I'expérience aléatoire.
L’ensemble €2 peut étre fini, infini dénombrable, ou infini non dénombrable.

Exemples d’univers associés & des expériences aléatoires :

Ex;— Lancer d’une piéce : Q = {F, P}, ensemble fini de cardinal Card(2) = 2.

Exo— Lancer d’'un dé : Q = {1,2,3,4,5,6}, ensemble fini de cardinal Card(2) = 6.

Ex3— Lancer d’un dé jusqu’a l'obtention d’un 6 : Q = {1,2,3,...} = N, w est le numéro
du lancer ol 'on obtient 6. Ensemble infini dénombrable.

Ex;— Choisir au hasard un nombre entre 0 et 1, Q@ = [0, 1] : ensemble infini non dénom-
brable.

1.2 Evénement

On appelle événement ’ensemble des issues de I’expérience qui vérifient une propriété
donnée. C’est donc une partie A de 2 (A € P(Q)).

A titre d’exemple, reprenons les expériences aléatoires énumeérées au paragraphe précédent

et donnons quelques exemples d’événements associés a ces expériences :

Ex;— On obtient «face» : A= {F}.

Exys— On obtient un nombre pair : A = {2,4,6}.

Ex3— On obtient le premier 6 entre le troisiéme coup et le septiéme coup (inclus) : A =
{3,4,5,6,7}.

Exs— On choisit un nombre strictement plus grand que % : A =]1,1].
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— Deux événements A et B son dit incompatibles si AN B = ().
— L’ensemble €2 est un événement appelé événement certain.

On associe & 'univers 2 un ensemble d’événements A appelé tribu. Cet ensemble doit
vérifier les propriétés suivantes :

(i) Qe A,
(i) Ae A= A°c A,
(i) VieN, AieAd=|JAiecA.

ieN
Si les axiomes (i), (ii) et (iii) sont vérifiés, alors le couple (€2,.4) est appelé espace d’évé-
nements.

Il n’y a pas unicité de I’espace d’événements (£2,.4) pour une expérience aléatoire donnée.
On peut par exemple associer a un univers (2 les tribus suivantes : A = P(Q2), A = {0, 2},
ou encore A = {), A, A%, Q} o A désigne un événement. (On vérifiera a titre d’exercice
qu’il s’agit bien de tribus.)

Suivant le choix de la tribu on aura un modéle probabiliste plus ou moins raffiné qui
permettra de décrire de maniére plus ou moins judicieuse ’expérience aléatoire considérée.
Reprenons a titre d’illustration ’exemple Ex; du lancer d’une piéce. On a Q = {P, F'}.
On peut prendre A = {0, Q} mais les seuls renseignements que ce modeéle nous apportera
concerneront, les chances d’obtenir «pile ou face» et les chances de n’obtenir «ni pile ni
face» (on ne tient pas compte de la possibilité que la piéce reste sur la tranche!). Ces
informations ne sont pas trés intéressantes. Il vaut donc mieux «raffiner» le modéle en
«grossissanty A. En prenant A = P(Q) = {0,Q,{F}, {P}}, on aura un modéle qui nous
donnera plus d’informations sur le résultat de ’expérience : chances de n’obtenir «ni pile
ni face», chances d’obtenir «pile ou face», chances d’obtenir «face», chances d’obtenir
«pile».

Lorsque €2 est fini ou infini dénombrable, I’ensemble des événements «standardy est A =
P (). Lorsque 2 = R, P(R) est bien une tribu, mais cette tribu n’est malheureusement
pas utilisable dans la théorie classique de la mesure. C’est pourquoi dans le cas o {2 = R
on choisit pour ensemble des événements «standard» ’ensemble des boréliens.

DEFINITION 15 On appelle ensemble des Boréliens, et on note B(R), l’ensemble des

parties de R engendrées (par intersections et réunions dénombrables) par les intervalles
de R.

2 Espace probabilisé

L’objectif de ce paragraphe est de définir la facon de «calculer», pour un événement donné,
la probabilité qu’il se réalise.

Commencons par présenter une construction intuitive sur I’exemple du lancer de dé. On
lance un dé a six faces et on observe le numéro obtenu. On prend pour univers associé a
cette expérience aléatoire

0 =1{1,2,3,4,5,6}.
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Chaque issue de I’expérience (ou encore chaque événement élémentaire) a «une chance sur
six» d’étre réalisée (si le dé n’est pas truqué!), donc chaque issue A de 'expérience (par
exemple A = {3}) a une probabilité de 1/6 de se réaliser. On note P(A) = 1/6.
L’événement «on obtient un nombre pairy, noté B = {2,4,6} a donc «3 chances sur 6»
d’étre réalisé :

B(B) === 5.

[’événement «on obtient un nombre entre 1 et 6» est I’événement certain, et a «6 chances
sur 6» d’étre réalisé : P(Q2) = 1.

On constate dans cette expérience que chaque événement A a une probabilité d’étre réalisé
égale a
Card(A)
P(A) = ——=
(4) Card(2)’
ou Card(A) désigne le cardinal de ’ensemble A et Card(2) désigne le cardinal de ’en-
semble €.

D’aprés les propriétés de la fonction cardinal, on obtient :

_ Card(Q2)
~ )= G Tt |
o Card(A°)  Card(2) — Card(A)
- P49 = Card(Q) Card () = 1-B(4),

- P(@) =0, P(Q) =1,

S ANB=0 PAUB) = Card(AU B)  Card(A) + Card(B)

Card(Q) Card(92)

=P(A) + P(B).

On remarquera que cette maniére de définir la probabilité d’un événement est étroitement
liée d’une part au fait que €2 soit un ensemble fini, d’autre part au fait que chaque événe-
ment élémentaire a la méme probabilité (on dit qu’il y a équiprobabilité). C’est pourquoi
on a besoin de définir le concept de «probabilité» applicable dans un cadre beaucoup plus

général.

2.1 Deéfinition

DEFINITION 16 Soit (2, A) un espace d’événements. On appelle probabilité sur (2, .A)
une application P définie sur A vérifiant

1. YAe A P(4)eo,1].
2. P(Q2) =1.
3. Quelle que soit la suite (A;)ien d’éléments de A deuz & deux disjoints (i.e. Vi,j € N,

AiNA;j=0) ona

1€EN

Le triplet (2, A,P) est appelé espace probabilisé.
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REMARQUE On peut remplacer la condition 3 de la définition 16 par :
quels que soient Ay, Ay € A disjoints (A; N Ay =0) on a

EXEMPLE On peut vérifier que dans le cas de 'exprérience du lancé de dé & six faces ou
I'univers est

0=1{1,2,3,4,5,6},

I'application P : P(2) — [0, 1] définie par P(A4) = Card(A)/6 pour tout A € P(2) est
une probabilité sur (Q,P(9)).

Cas particuliers importants

1 - Si ©Q est un univers fini ou dénombrable, Q@ = {w;}icr, I C N, la donnée des valeurs

prises par P sur les singletons (i.e. : la donnée de P({w;}) pour tout i € I) suffit a

caractériser 'application P sur A. En effet, tout événement A € A s’écrit A = U{wj} oll
jer

J est un sous-ensemble de I. D’aprés la propriété 3 on en déduit que

P(4) =P (U{wj}> = P({w}).

jeJ j€J

2 - Dans le cas ot € est un univers fini, Q = {w; };=1,._,, si toutes les issues de I’expérience
sont équiprobables, c’est-a-dire si

1
P({wi}) = P({wz}) = ... = P({wa}) = .
alors la probabilité P est appelée probabilité uniforme sur 2. Dans ce cas

VAe A P(A) :%'

On dit alors souvent que la probabilité d’un événement est «le rapport du nombre de cas
favorables au nombre de cas possiblesy.

Attention, ce n’est pas parceque 'univers {2 est fini que la probabilité sur 'espace d’évé-
nements associé est la probabilité uniforme. Il ne faut surtout pas confondre univers fini
et probabilité uniforme! L’exemple suivant illustre cette mise en garde.

EXEMPLE On sonne & votre porte. Quelle est la probabilité que le visiteur soit un élé-
phant rose? Il y a 2 cas possibles : ou bien c’est un éléphant rose ou bien ce n’est pas
un éléphant rose. «Le rapport du nombre de cas favorables au nombre de cas possibles»
est donc de 1/2. On comprend mieux la raison pour laquelle les parents recommandent a
leurs enfants de ne pas ouvrir la porte & n’importe qui ...
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REMARQUE Dans le cas d’un univers infini, par exemple {2 = N, il ne peut pas y avoir
équiprobabilité (autrement dit il est impossible d’associer a 1’espace d’événements la pro-
babilité uniforme) car on aurait alors

P({i}) >0 VieN

ce qui impliquerait

P(Q) = ZP({Z}) = +00.

2.2 Propriétés

PROPOSITION 14 Soient A et B deux événements d’un espace probabilisé (2, A,P). La
probabilité P est une application qui vérifie les propriétés suivantes :

1. P(A°) =1-P(A),
2. AC B=P(A) <P(B),
3. P(AUB) =P(A)+P(B) -P(ANB) .

DEMONSTRATION 1. Les événements A et A€ sont disjoints et AU A°¢ = ). On déduit de
la définition 16 que

1 =P(Q) = P(A U A°) = P(A) + P(A°)

ce qui implique que P(A°) =1 — P(A).

2. Si A est un sous-ensemble de B, alors B = A Uy (B \ A) et 'union est disjointe.
On déduit de la définition 16 que P(B) = P(A) + P(B \ A), avec P(B \ A) > 0. Ainsi,
A C B= P(A) < P(B).

3. Pour tous sous-ensembles A et B de Q, on a A = (A \ B) Uz (AN B) ou 'union
est disjointe. On en déduit que P(A) = P(A \ B) + P(A N B). Par ailleurs, on a aussi
B=(B\ A)Ug (BN A) (ou'union est disjointe) d’on

P(B) =P(B\ A)+P(BnNA).

Par conséquent,
AUB = (A\B)Us (ANB) U4 (B\ A)

et
P(AUB) =P(A\ B)+P(B\ A) +P(BNA) =P(A) + P(B) - P(AN B).

REMARQUE L’analogie entre les propriétés de la probabilité et celles du cardinal (voir
les propositions 11 et 13 du chapitre précédent), déja mise en exergue au début de ce
paragraphe, se poursuit ici.
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EXERCICE On considére le cas ot §2 est un univers fini et on munit ’espace d’événements
(Q,P(2)) de la probabilité uniforme, de sorte que

VA€ P(Q) P(A) = %ﬁé;.

En utilisant les propriétés du cardinal d’un ensemble, redémontrer la proposition 14 dans
ce cas particulier.

On peut généraliser la propriété 3 de la proposition 14 par la formule de Poincaré.

ProPOSITION 15 (Formule de Poincaré) Soient Ay, ..., A, des événements d’un es-
pace probabilisé (2, A,P). On a

IP’(OA,-) = En:IP’(AZ-)— Y P(A;N4))

1<i<j<n

e 5 o

1<i < <ip<n

+eod (-D)P ((n] A,-).

J

k
A)
J
=1

EXERCICE Soient A;, As, A3 trois événements d’un espace probabilisé (€2, A, P). Expliciter
P(Al U A2 U Ag) en fonction de ]P(Al), P(AQ), ]P(Ag), ]P(Al N AQ), ]P(Al N A3), ]P(Ag N AQ)
et ]P(Al N A2 N Ag)

Nous admettons la proposition suivante, qui n’aura dans ce cours qu’un intérét technique,
utile pour des démonstrations futures.

PROPOSITION 16 Soit (2, A,P) un espace probabilisé ot ) est un univers infini et
(An)nen est une suite d’événements telle que

VnmeN, m>n, A,CA,.

On a alors

im P(A,) =P (ﬂ An> .

neN

2.3 Exemples

Reprenons les exemples du paragraphe 1.2 et définissons les espaces probabilisés associés

a chaque expérience.
Ex;— On choisit Q = {P, F'}. On peut prendre A = {0, Q} avec P(0) = 0 et P(Q) = 1,
mais les seuls renseignements que ce modéle nous apporte sont : «il y a toutes les chances
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d’obtenir pile ou facey (P(Q2) =P({P, F'} = 1), et «il n’y a aucune chance de n’obtenir
ni pile ni face» (P() = 0).

Ces informations ne sont pas trés intéressantes. Il vaut donc mieux «raffiner» le mo-
déle en «grossissanty A : A = P(Q) = {0,Q,{F},{P}}, avec P(0) = 0, P(Q) = 1,
P({F}) =1/2, P({P}) = 1/2, modéle qui donne plus d’'informations sur le résultat de
I’expérience.

Exo— On prend Q = {1,2,3,4,5,6}. On choisit le modéle le plus «complety : A = P().
(Card(A) = 2% = 64). Si le dé n’est pas truqué, alors Vi = 1...6, P({i}) = 1/6. La
donnée de P sur les singletons suffit a caractériser P en entier. En effet

P({1,2}) = P{1}) + B({2D) = £ = 5,

2

P({1,2,4,6}) = P{1}) + P({2}) + P({4}) + P({6}) = % =3

etc.

Ex3— (Lancer d’un dé jusqu’a 'obtention d'un 6.) On prend @ = N, ensemble infini
dénombrable et A = P(2). On définit P sur les singletons :

5\"""1
P =(2) =
@=(3) &
ol (5/6)"! est la probabilité de faire 1,2,3,4 ou 5 aux (i — 1) premiers coups, et 1/6
est la probabilité de faire 6 au 2éme coup.

Ici, on vérifie bien que
+o0o
5
o) = S(3) 5
1R /5)’
20
=

61-3

Exs— (Choisir «uniformément» un nombre entre 0 et 1). On prend Q = [0, 1] ensemble
infini non dénombrable et A est ’ensemble des boréliens de [0, 1]. On pose P(|a,b|) =
b—a, ou |a,b| = [a,b], |a,b], [a,b] ou |a, b[.

On voit sur ce modéle que Ve € R, P({c}) = 0.

3 Probabilités conditionnelles

Nous nous plagons dans ce paragraphe sur un espace probabilisé (€2, 4, P).

3.1 Problématique

Considérons ’expérience consistant & lancer deux fois un dé. On définit

Q={(i,j) eN’,1<i<6,1<j<6}
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et A =P(Q). On s’intéresse a la somme des deux chiffres obtenus.
Soit A I'événement «le total fait 9». On a

A= {(37 6)’ (47 5)> (57 4)’ (67 3)}1

done Card(4) 4 1
ar
P(4) = Card(Q) 36 9

Soit B I’événement : «on obtient 3 au premier lancery. Alors
B={(3,j) e N,1<j <6},

done Card(B) 6 1
ar
P(B) = Card(Q) 36 6

On se pose maintenant le probléme suivant : sachant que B est réalisé, c’est-a-dire sachant
que ’on obtient 3 au premier lancer, quelle est la probabilité que le total fasse 97 Pour
répondre & cette question, il semble nécessaire de modifier notre espace probabilisé.

On définit un nouvel univers (ensemble des possibles) :

Q={3,/))eN,1<j<6}=QNB

et on prend A" = P('). On considére alors 'espace probabilisé (', A", P') o P est la
probabilité uniforme sur €. L’événement A’ «le total fait 9» dans ce nouveau modéle
s’écrit

A'={(3,6)} = An B.
Ona Card(4) 1

ar
PA)= ———F =~

(4) Card(Y) 6
Remarquons que 'on aurait pu, en calculant P(AN B) dans l’espace probabilisé (2, A, P),
s’affranchir de cette nouvelle modélisation puisque

1
#

_ Card(A')  Card(ANnB) P(ANB)
~ Card(Y) Card(QNB)  P(B)

P'(A")

La notion de probabilité conditionnelle est 'un des concepts fondamentaux de la théorie
des probabilités. Elle intervient dans les situations suivantes.

- On cherche a calculer la probabilité de réalisation d’un événement alors qu'une partie
de I'information concernant le résultat est connue et on ne souhaite pas modifier la mo-
délisation associée a I’expérience aléatoire considérée. C’est le cas de ’exemple précédent.
- Il est parfois beaucoup plus simple de modéliser une expérience aléatoire en utilisant des
probabilités conditionnelles plutot que d’utiliser toute I'information disponible pour définir
I’espace probabilisé (qui peut étre difficile a préciser). L’exemple suivant est typique de
cette situation. Une urne contient 10 boules blanches, 5 boules jaunes et 10 boules noires.
Une boule est tirée dans I'urne au hasard et on constate qu’elle n’est pas noire. Quelle est
la probabilité qu’elle soit jaune ?
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SECTION 3. PROBABILITES CONDITIONNELLES

3.2 Deéfinition

DEFINITION 17 Soit (2, A,P) un espace probabilisé, A € A, B € A tel que P(B) # 0.
La «probabilité de A sachant B» est définie par

P(AN B)

P(AIB) = =5 5;

REMARQUE On peut étendre cette définition aux événements de probabilité nulle en
posant P(A|B) = 0 si P(B) = 0.

PROPOSITION 17 L’application
Pg: A€ A— P(A|B)

définit une probabilité sur ’espace des événements (S0, A). Cette probabilité est appelée
probabilité conditionnelle sachant B.

DEMONSTRATION On vérifie les trois points de la définition 16 :
1. Soit A € A, alors d’une part

P(AN B) >0,
P(B) ~

car P(AN B) > 0 et P(B) > 0, d’autre part
IPB(A) S ]-7

car P(AN B) < P(B) (voir proposition 14).
_P@nB) PB) _
2. Pg(Q) = P(B) ~ P(B) 1.
3. Si Ay N Ay =0, alors (A; N B) N (AN B) =0, et on peut écrire
_ P((AyuAdy)nB)  P(A N B)+P(A, N B)
Falh o) = = = P(B)
== IPB(Al) + IPB(AQ)

Pp(A) =

Ceci est généralisable, par récurrence, a U A;.
ieN

PROPOSITION 18 Soient A, B € A. On a les relations suivantes :
1. P(A¢|B) =1-P(A|B);
2. (AN B) =P(A|B) x P(B) =P(B|A) x P(A).
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DEMONSTRATION La premiére relation résulte du fait que Pg définit une probabilité sur
I'espace des événements (£2,.4), voir la proposition 17. On peut également la démontrer
directement : puisque B = (BN A) Uy (B N A°) avec une union disjointe, on a

P(B) =P(BNA)+P(Bn A°).

On en déduit que
P(B N A°) P(BnN A)

P(B) =1 P(B)

c’est-a-dire que

P(A°|B) = 1 — P(A|B).

La seconde relation est immédiate en utilisant la définition de la probabilité conditionnelle.
0]

3.3 Formule de Bayes

BAYES, Thomas (1702, Londres - 1761, Tunbridge Wells).

Théologien protestant, il s’adonna aux mathématiques sous la houlette
de De Moivre. 11 sera le premier, avant Laplace, & exposer le probléme
de la probabilité des causes : calcul de la probabilité d’'un événement
complexe dont on sait qu’un de ses composants (causes) s’est produit. 11
fut membre de la Royal Society.

DEFINITION 18 On dit que les sous-ensembles A1, ..., A, de l’ensemble 2 forment une
partition de € si

1.90,5) e {1,...,n}% i#j, AinA;=0,

2. LnJAi = Q.
=1
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THEOREME 1 Soit (2, A,P) un espace probabilisé et soient Ay, ..., A, une partition
de €. On a les relations suivantes :

VBe A P(B)= ZIP’(B\AZ-) x P(4;) (formule des probabilités totales) ;

=1

VBe A P(A4;|B) = P(B|Ag) x P(Ay)

(formule de Bayes) .

n

ZP(BVL’) x P(4;)
i=1
DEMONSTRATION Soient B € A et Ay,..., A, une partition de Q. On a

n n
B=Bna=8Bn|J4=JBnA4).
i=1 i=1
Remarquons que 'union est disjointe puisque pour tout 7,5 € {1,...,n} avec i # j on a
par associativité de 'intersection

(BNA)N(BNAj)=Bn (A nNA4;)=0.
—
=0
On en déduit que
P(B) =P (U(B N Ai)) =Y P(BNA;) =) P(B|A;) x P(4).
i=1 i=1 i=1
D’autre part, pour tout entier k avec k € {1,...,n}, on a

P(Ax N B) _ P(B|Ax) x P(Ag)
B ="%G =~ »@

REMARQUE La formule de Bayes est souvent utilisée dans le cas n = 2 avec Ay = A,
comme l'illustre ’exemple suivant.

EXEMPLE Un étudiant répond & une question a choix multiple, et il doit choisir entre
3 réponses. On suppose que I’étudiant a une chance sur deux de connaitre la réponse.
Dans le cas ot il ne la connait pas, il coche une réponse au hasard. Sachant que I’étudiant
répond juste, quelle est la probabilité qu’il connaisse la réponse 7

On considére les événements C' = «I’étudiant connait la réponse» et J = «I’étudiant
répond juste». On a alors P(C) = 1/2, P(J|C) = 1, P(J|C¢) = 1/3 et on veut calculer
P(C|J). Si I'on applique la formule de Bayes, on obtient

P(J|C) x P(C*) _ 1x
(J|C) x P(C) + P(J|C¢) x P(C®)  1x %+

Il y a donc 3 chances sur 4 que I’étudiant n’ait pas répondu juste par hasard...

B(C]J) = 5

W (N
w

1
X 2
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4 Indépendance

DEFINITION 19 Soient (2, A,P) un espace probabilisé et A, B deux éléments de A.
Les événements A et B sont dits indépendants si

P(AN B) = P(A) x P(B).

PROPOSITION 19 Soient (2, A,P) un espace probabilisé et A, B deux éléments de A
tel que P(B) # 0. Les événements A et B sont dits indépendants si et seulement si

P(A|B) = P(A).
P(ANB
DEMONSTRATION - On a P(A|B) = % Si I'on suppose A et B indépendants on
. _P(A) xP(B) _
P(ANB
- Réciproquement, si P(A|B) = P(A) alors W = P(A) et par conséquent

P(AN B) = P(A) x P(B)

autrement dit les événements A et B sont indépendants. o]

La notion d’événements indépendants est I'une des premiéres difficulté du calcul des pro-
babilités. A la question : «qu’est-ce que 2 événements indépendants ?», on répond com-
munément «ce sont deux événements qui n’ont pas d’influence I'un sur 'autre». Or cette
réponse qui dans le langage courant, parait claire et satisfaisante, est en réalité imprécise.
L’indépendance des événements A et B signifie qu’avoir observé la réalisation de B ne
modifie pas la probabilité d’une eventuelle réalisation de A. On ne peut donc parler d’indé-
pendance sans avoir au préalable fixé une probabilité sur ’espace d’événements considéré.
Ainsi, considérons ’expérience aléatoire consistant a lancer deux fois un dé et prenons
pour univers Q =T xT"oa I' = {1,2,3,4,5,6} et pour tribu sur {2 ’ensemble A = P(f2).
Intéressons-nous aux événements A : «on obtient 1 ou 2 & chacun des 2 lancers» et B :
«la somme des deux résultats est paire». Les événements A et B sont-ils indépendants ?

Cette question n’a pas de sens! On ne peut pas trancher concernant 'indépendance des
événements A et B sans avoir auparavant donné une probabilité de réalisation aux évé-
nements A et B et également & ’événement A N B. Si le dé n’est pas truqué, on munit
naturellement ’espace d’événements (£2,P(€2)) de la probabilité uniforme. On peut véri-
fier que P(A4) =1/9,P(B) = 1/2 et que P(A N B) = 1/18. Dans ce cas, les événements A
et B sont effectivement indépendants.

Supposons maintenant que le dé est pipé de sorte que le 1 ait une chance sur deux de
sortir, et que chacune des cinq autres faces ait une chance sur dix. On peut vérifier qu’on
a alors P(A) = 9/25,P(B) = 29/50 et que P(AN B) = 13/50. Dans ce cas, les événements
A et B ne sont pas indépendants.
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L’indépendance des événements est donc liée & la probabilité considérée, elle méme définie
par la qualité du dé.

REMARQUES 1. De fagon générale, il faut bien retenir que la définition probabiliste
de I'indépendance est plus «large» que la notion intuitive.

2. Ne pas confondre événements indépendants et événements incompatibles (ou dis-
joints). Deux événements A et B incompatibles (ou disjoints) de probabilités non
nulles ne sont pas indépendants, car P(A N B) = P(()) = 0, et P(A) # 0, P(B) # 0,
d’ou P(A) x P(B) # 0. En effet, on a AN B = () si et seulement si A C B¢, donc «A
implique non-By, il y a donc une forte relation de dépendance!

PROPOSITION 20 Si A et B sont indépendants, alors il en est de méme pour A et B¢,
pour A€ et B, pour A¢ et B.

DEMONSTRATION Il suffit de montrer que A et B¢ sont indépendants, on en déduira les
autres par passages successifs au complémentaire. D’une part, on a

(ANB)U(ANB)=AN(BUB) = A,
et (AN B)N (AN B) = (. Donc
P(ANB°) = P(A) —P(ANB)
= P(A) —P(A) x P(B) (par indépendance de A et B)
= P(A) x (1-P(B)) = P(A) x P(B°).

DEFINITION 20 Les événements Ay, ..., A, € A sont dits mutuellement indépen-
dants siVk € {1,...,n} et V(iy,...,ix) € N tel que 1 < i1 < iy < ... <ip < m, on
a

EXEMPLE Pour trois événements A, B et C, cela se traduit par
1. (ANB)=P(A) xP(B), P(ANC) =P(A) x P(C), P(BNC) =P(B) x P(C),
2. PANBNC)=PA) x P(B) x P(C).

REMARQUE Des événements peuvent étre 2 a 2 indépendants sans étre mutuellement
indépendants. Considérons par exemple ’expérience consistant a lancer un dé deux fois
et les événements A : «le premier jet a donné un numéro pair», B : «le second jet a donné
un numéro impairy» et C : «la somme des deux numéros est un chiffre pairy. On vérifie
que les trois événements sont 2 & 2 indépendants (en exercice) mais pas mutuellement
indépendants (on vérifie que les trois événements sont incompatibles P(AN BN C) = 0

mais P(A) x P(B) x P(C) # 0).
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L’indépendance est parfois difficile 4 admettre. Chacun sait que, malgré tout ce que ’'on
peut leur expliquer, les joueurs qui ont vu au casino le rouge sortir 10 fois de suite,
penseront que la probabilité de voir le noir sortir a la 11° partie est accrue. Or il n’en n’est
rien. Les parties étant indépendantes, la probabilité de voir le noir sortir a la 11¢ partie est
toujours de 1/2 et est égale a la probabilité de voir le rouge sortir. Le résultat d’un million
de parties n’apporterait aucune information supplémentaire sur la partie suivante!
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Chapitre 3

Variables aléatoires réelles

1 Définitions

1.1 Variable aléatoire

Soit (£2,.4,P) un espace probabilisé modélisant une expérience aléatoire. Il arrive souvent
que l'on s’intéresse plus particuliérement a des «conséquencesy» des résultats de I'expé-
rience, c’est-a-dire & une certaine fonction X des résultats de I’expérience. Par exemple,
on lance 2 dés et on s’intéresse a la somme des valeurs des 2 dés. X est alors une applica-
tion qui au résultat du lancer associe la somme des valeurs des 2 dés. Autrement dit, on
s’intéresse a I’ensemble Q' = X (€2) des conséquences possibles des résultats de ’expérience
et on veut calculer la probabilité de certains événements de la tribu A’ associée a €. Pour
obtenir cette nouvelle probabilité sur (€',.A") on se sert des propriétés de 'application X.

DEFINITION 21 Soient (2, A) et (U, A") deux espaces d’événements. On appelle va-
riable aléatoire de [’espace d’événements (2, A) vers (2, A") une application

X: 00—«

telle que
VA e A, X 1(A) e A,

ou X 1A ={we, X(w)e A}

REMARQUE Le terme «variable aléatoire» constitue un abus terminologique puisque 1’on
définit une application.

EXEMPLE On considére un jeu de lancer de dé ot le joueur qui a misé une certaine somme
double sa mise si le résultat est 6, perd tout sinon. L’univers associé a cette exprérience
est Q ={1,2,3,4,5,6}. On considére la fonction X : Q — {0, 1} définie par : X (w) =1
si w =6, X(w) = 0 sinon. Cette fonction met en exergue la seule issue qui intéresse le
joueur. On a donc Q' = {0, 1}. On s’intéresse a I’événement «le joueur gagney, c’est-a-dire
a A" = {1}. On doit donc poser A" = P (') de fagon a ce que A’ € A" = {0, 0,{1},{0}}.
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Pour que X soit une variable aléatoire, il faut que

X(Q)=Q e A,
X710)=0¢c A,

X7H({1}) = {6} € 4,
X1({0}) = {1,2,3,4,5} € A.

On voit donc par exemple que si A = {(), 2}, X n’est pas une variable aléatoire, et de fait,
I'information «contenue» dans A est «le dé est jetéy () ou «le dé n’est pas jetéy (), et
ne suffit pas pour déterminer si le joueur a gagné ou non. A doit au minimum contenir

{6} et {6}°.

On s’intéresse dans ce chapitre a définir de nouveaux outils qui vont permettre de calculer
la probabilité que le joueur gagne, c’est-a-dire a calculer la probabilité que X (w) = 1.

REMARQUES 1. En pratique, on s’intéresse souvent au cas ou ' C R, par exemple
QA" = (R,B(R)) ou (N,P(N)). La variable aléatoire de I’espace d’événements

(2, A) vers (2, A') est alors qualifiée de variable aléatoire réelle (notée v.a.r.).
2. Un espace d’événements (£2,.4) est amené a étre muni d’une certaine probabilité
P. On désignera par variable aléatoire réelle sur 1’espace probabilisé (2,.4,P) une
variable aléatoire réelle sur ’espace d’événements (£2,.4) muni de la probabilité P.

Nous admettons qu’une variable aléatoire réelle est caractérisée de la maniére suivante :

PROPOSITION 21 Une application X : 2 — R est une variable aléatoire réelle sur
Pespace d’événements (2, A) si

VzeR, X '(]-o0,12]) €A

REMARQUE La composée a gauche g(X) d’une v.a.r. X par une fonction «raisonnable!»
g est elle aussi une v.a.r. Par exemple, si X est une v.a.r. sur (2, .4,P), et si g est une
fonction continue par morceaux quelconque de R dans R, alors g(X) est encore une v.a.r.

sur (2, A,P).

1.2 Fonction de répartition

DEFINITION 22 Soit X une v.a.r. sur l’espace probabilisé (52, A,P). L’application

Fx: R — [0,1]
r — P(X (] -o00,1]))

est appelée fonction de répartition de X.

lRigoureusement, on exigerait seulement que cette fonction soit «mesurable», notion que nous ne
deéfinissons pas ici, voir par exemple [Gapaillard].
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Rappelons que P(X ! (] — oo, 7])) = P({w € Q, X(w) < x}) ce que, par abus de notation,
nous écrirons le plus souvent P(X < x).

PROPOSITION 22 Soit X une v.a.r. sur (2, A,P). La fonction de répartition associée
a X vérifie les propriétés suivantes :

1. lim Fy(z)=0;

T—r—00

2. lim Fx(z)=1;

T—+00
3. Fx est croissante : V(z,y) € R? (:U <y= Fx(z) < FX(ZU)) ;

4. Fx est continue a droite.

DEMONSTRATION 1. On a

lim Fx(z) = lim P(X7}(] = o0, 2])) = P(X"(}) = P() = 0.

T——00 T—r—00

2.0n a wglfoo Fx(z) = wEIEOOP(X—l(] —000,7])) = P(X"}(R)) =P(Q) = 1.

3. Siz <y alors | — oo, z] C] — 00,y] et donc X !(] — 00, z]) € X(] — 00,y]). On en
déduit que

Fy(z) = P (X (] = 00,2]) <P (X}(] = 00,4]) = Fx(y).
4. Soit (g )nen une suite décroissante de Rt tendant vers 0. Montrons? que

lim Fx(z+ u,) = Fx(x).

n—-+00

lim Fx(z+u,) = lim P(X <z+u,)

n—-+0o00 n—+0o0

= P(()[X <7+ ul)

= Pwe, Vne N, X(w) <z+u,})
= P{weQ X(w) <))
Le passage de la premiére a la deuxiéme ligne provient du fait que les événements

A, = [X < z + u,] forment une suite d’événements décroissants puisque la suite (uy,)nen
est décroissante, voir la proposition 16 page 18. o]

2Nous utilisons ici d’une part I’équivalence sur R entre la continuité et la continuité séquentielle, et
d’autre part que de toute suite positive convergeant vers 0 on peut extraire une sous-suite décroissante,
voir par exemple [Balac-Sturm].
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1.3 Variables aléatoires discrétes et variables aléatoires continues

DEFINITION 23 Une v.a.r. X est dite discréte si elle ne prend qu’un nombre fini ou
dénombrable de valeurs dans R, c’est-a-dire si X () ={z; €R, je J} ou JCN.
Dans ce cas la fonction
p:J — [0,1]
J > Dpj

ou p; = P(X = ;) est appelée fonction de masse de la v.a.r. X.

REMARQUES 1. Si X ne prend qu’un nombre fini de valeurs, on considére par conven-
tion que p; = 0 pour tout j € N\ J.

2. D’apreés les points 1 et 2 de la définition 16 du chapitre 2, on a
(a) pour tout j € J p; > 0;

(b) Y py=1.

jedJ

PROPOSITION 23 Si X est une v.a.r. discréte prenant les valeurs {z; € R, i € I} avec
I C N, alors sa fonction de répartition Fx est constante par morceauz et a pour points
de discontinuités {z; € R, i € I}.

DEMONSTRATION On suppose que les z; sont rangés dans 1'ordre croissant de leur indice :
To < x1 < To... On vérifie alors que :

si x <z alors Fx(z) = P
si z € [xg,x1[ alors Fx(z) = P

si € [r,xe[ alors Fx(z) =

De maniére générale, on vérifie par récurence que pour tout £ € N,

k

T € [z, tp1| = Fx(z) = Zpi.
=0

La fonction de répartition F'x est donc constante par morceaux et admet pour points de
discontinuités {z;, i € I'}. 0
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10
TR, S
i
R —
——pO H pl
O il: po
XX % X3

F1G. 3.1 — Allure de la représentation graphique de la fonction de répartition d’une variable
aléatoire discréte.

DEFINITION 24 Une v.a.r. X est dite absolument continue®s’l existe une fonction de
R dans R, notée fx, telle que la fonction de répartition Fx de la v.a.r. X admette la
représentation intégrale sutvante :

Fy(z) = / " )t

Ceci est équivalent a dire que Fx est dérivable sur R, de dérivée fx. La fonction fx
est appelée densité de X. On parle aussi de v.a.r. a densité pour désigner une v.a.r.
absolument continue.

REMARQUE Une v.a.r. peut étre ni discréte ni absolument continue (Fx est cependant
«toujoursy» dérivable par morceaux), mais nous ne considérerons généralement que des
exemples de v.a.r. discrétes ou absolument continues. Nous appellerons souvent ces der-
niéres (abusivement) variables aléatoires continues.

1.4 Loi d’une variable aléatoire

3Par rapport & la mesure de Lebesgue.
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PROPOSITION 24 Soient (2, A) et (', A’) deuz espaces d’événements. Soient X une
variable aléatoire de (2, A) vers (', A") et P une probabilité sur (2, .A).
L’application
Px : A — [0, 1]
A" — P(XH(A))

définit une probabilité sur l’espace d’événements (U, A"). Celte probabilité est appelée loi
de la variable aléatoire X.

DEMONSTRATION Montrons que Px vérifie bien les conditions pour étre une probabilité

(voir la définition 16 page 15).

— Px est bien définie car le fait que X soit une v.a. implique que X ~!(A’") € A, et 'image
de Px est incluse dans celle de PP, ¢’est-a-dire dans [0, 1].

- Px () =P(X1(Q)) =P(Q) = 1.

— Soit (AL);en une suite d’événements disjoints de (Q',.A"), alors

Px (UieN A;) = P (X_l (UieN A;))
= P{we X(w)eUenA})
= PH{weQ, I eN X(w)e A}
= P(Ujen{w € Q, X(w) € A})
= P(Uien X'(4)
= Y P(X'(4))

1€EN

= ) Px(4)).

1€N

Le passage de la quatriéme a la cinquiéme ligne résulte du fait que les X ~'(A%) sont
disjoints (car les A; le sont et X est une application).
0]

Caractérisation de Py

Soit X une variable aléatoire réelle sur 'espace probabilisé (€2, A, P) et soit A un borélien
de R.

- Si X est une v.a.r. discréte, alors

Px(A) =) P(X = ;) x La(z;) = ¥ _pj x La(z;),

jEN jEN

1 i A . .
ou 'on rappelle que I4(z) = { sto e dénote la fonction indicatrice de ’en-

0 siz¢g A
semble A.
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- Si X est une v.a.r. continue, alors

A) = /A FeBydt = /R Fx() x La(t) dt

La loi d’une variable aléatoire est donc caractérisée par la donnée de
1. la fonction de masse dans le cas d’une v.a.r. discréte;

2. la fonction de densité dans le cas d’une v.a.r. absolument continue.

REMARQUES 1. A toute v.a.r. discréte est associée une fonction de masse p = (Ps)ien
sur N telle que

(l) Vi € Na Di € [07 1]7

(i) Zpi =1

ieN
2. A toute v.a.r. continue est associée une fonction de densité fx telle que
(i) Vt € R, fx(t) € RT;

w/f

3. Réciproquement, toute fonction p = (p;);en vérifiant (i) et (ii) est la fonction de
masse d’'une v.a.r. discréte, et toute fonction positive dont I'intégrale sur R est égale
a 1 (c’est-a-dire vérifiant (4i7) et (iv)) est la densité d’une v.a.r. continue.

2 Exemples de lois

2.1 Variables aléatoires discrétes
Loi de Bernoulli  B(1,p), p€]0,1]

La v.a.r. X sur I’espace probabilisé (2, .4, P) suit une loi de Bernoulli de paramétre p (on
note X ~ B(1,p)) si elle est a valeurs dans {0, 1} avec

Cette loi modélise I'issue d’une expérience oil ’on ne s’intéresse qu’au «succés» ou a
I’ «échec» de ’expérience.

Loi binomiale B(n,p), neN, pe€|0,]1]

La v.a.r. X sur I’espace probabilisé (€2, .4, P) suit une loi de binomiale de paramétre (n, p)
(on note X ~ B(n,p)) si elle est & valeurs dans {0,1,...,n} avec

Vie{0,...,n}, P(X =1i)=C'p'(1-p)""
Cette loi modélise une succession de «succés» et d’ «échecs», p étant la probabilité du

succés. Notons que la loi de Bernoulli est une loi binomiale particuliére (n = 1).
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Loi uniforme sur {1,...,N} Uy,N € N*

La v.a.r. X sur I’espace probabilisé (2, .4, P) suit une loi uniforme sur {1,..., N} (on note
X ~ Uy) si elle est a valeurs dans {1,..., N} avec

P(X =k)=1/N Vke{l,...,N}

Cette loi modélise I'issue d’une expérience ou les résultats sont équiprobables.

Loi géométrique G(p), p€]0,1]

La v.a.r. X sur ’espace probabilisé (£2, .4, P) suit une loi géométrique de paramétre p (on
note X ~ G(p)) si elle est a valeurs dans N* avec

Vie N, P(X =i)=p(l—p)"

Cette loi modélise une série d’ «échecs» suivie du premier «succeés.

Loi de Poisson P(A), A>0

La v.a.r. X sur 'espace probabilisé (2, .4,P) suit une loi de Poisson de parameétre \ (on

note X ~ P())) si elle est a valeurs dans N avec
)\k
VkeN, P(X=k) = e—*F

C’est une loi discréte fréquement utilisée en modélisation, en particulier pour les files
d’attente.

PoO1ssON, Siméon Denis (1781, Pithiviers - 1840, Sceaux).

Brillant polytechnicien, éléve de Fourier et de Laplace, astronome et
physicien, il occupa de nombreux et importants postes d’enseigne-
ment et fut élevé & la dignité de pair de France par Louis-Philippe
en 1837. On le connait bien siir pour sa célébre loi de probabilités
(Théorie du calcul des probabilités, 1838), mais ses travaux portent
principalement en électricité, magnétisme, mécanique et mouve-
ments vibratoires (théorie de la chaleur, théorie des ondes) ou, in-
troduisant de nombreux concepts mathématiques liés aux équations
de Laplace, il apparait comme le batisseur de la physique mathéma-

tique moderne (étude, au moyen de la seule analyse mathématique,
du comportement d'un phénomeéne).

S. BALAC & O. MAZET - Introduction aux Probabilités 34



SECTION 2. EXEMPLES DE LOIS

1/(b-a) |

F1G. 3.2 — Représentations graphiques de la densité f et de la fonction de répartition F
d’une loi uniforme sur [a, b].

2.2 Variables aléatoires continues
Loi uniforme  U([a,b]), a<b

La v.a.r. X sur l'espace probabilisé¢ (€2, .A,P) suit une loi uniforme sur [a,b] (on note
X ~ U([a,b))) si elle est & valeurs dans [a, b] et a pour densité la fonction
Fr(t) = = T
On vérifie que la fonction de répartition d’une v.a.r. X de loi uniforme est
0 siz<a
Fx(z) = x_Z siz € [a,b]

h—
1 sizx>b

Loi normale N (m,0%), meR, o>0

La v.a.r. X sur I'espace probabilisé (2, 4, P) suit une loi normale de paramétres (m, o?)
(on note X ~ AN(m,c?)) si elle est a valeurs dans R et a pour densité la fonction

Felt) = — exp(—m).

2mo 202

REMARQUE La fonction de répartition de la loi normale

1 e (t —m)?
Fx : R+— —— ) dt
XX € o /oo exp ( 552 )

n’est pas exprimable a I’aide des fonctions usuelles (puissances, trigonométriques, hyper-
boliques et leurs fonctions réciproques). Les valeurs numériques prises par la fonction de
répartition de la loi normale sont tabulées, voir le tableau page 96.
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0.8

0.7+

0.6

0.4

0.3

0.2

1 2 3 4

F1G. 3.3 — Représentation graphique de la densité de la loi normale pour m = 0 et 0 = 1.
Cette courbe est appelée courbe de Gauss.

Loi exponentielle &£(})), A >0

La v.a.r. X sur lespace probabilisé (€2, A, P) suit une loi exponentielle de paramétre A
(on note X ~ E£(N)) si elle est a valeurs dans R avec pour densité la fonction

e A sit>0

f)((t) = AeiAt]IR+(t) = {

0 sinon

Loi de Cauchy

La v.a.r. X sur l’espace probabilisé (2, .4,P) suit une loi de Cauchy si elle est a valeurs
dans R avec pour densité la fonction

1

Ix(t) = 1+ 2)
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CAucHY, Augustin-Louis (1789, Paris - 1857, Sceaux).

Augustin-Louis Cauchy commence sa carriére comme ingénieur militaire.
En 1816, il obtient un poste de professeur & la Faculté des Sciences de Pa-
ris et & I'Ecole Polytechnique et entre 4 1’Académie des Sciences. L’ceuvre
de Cauchy est considérable, surtout en analyse ou il a su donner le cadre
rigoureux nécessaire a son développement. Il introduit une notion pré-
cise de continuité et élabore une définition rigoureuse de l'intégrale. Son
travail concerne tous les domaines des mathématiques, en particulier les

équations différentielles, la théorie des groupes et ’algébre linéaire.

Loi Gamma [I(a,b), «>0, b>0

La v.a.r. X sur I'espace probabilisé (£2, A, P) suit une loi Gamma de paramétres (a,b) (on
note X ~ I'(a, b)) si elle est a valeurs dans R avec pour densité la fonction

Fe(t) = ﬁbat‘“le‘bt Tt (1)

ou oo
['(a) = / u* te “du, Va > 0.
0

REMARQUE La fonction «Gammay prolonge la fonction «factorielle» sur I’ensemble des
réels ausens ou Vn € N, T'(n+1) =nlet Va >0, T'(a+1) = al(a). De plus, on a

P(3) = V.

3 Moments d’une variable aléatoire

3.1 Espérance

DEFINITION 25 Soit X une v.a.r. sur l’espace probabilisé (2, A, P).

1. Si X est une v.a.r. discréte et X() = {z; € R, j € J} ou J C N, on appelle
espérance de X et on note E(X), la moyenne des valeurs prises par X pondérées
par leurs probabilités de réalisation, autrement dit, lorsque cette quantité existe,

E(X) =) z; x P(X = ;).

jed

2. §1 X est une v.a.r. continue de densité fx, on appelle espérance de X et on note
E(X), lorsqu’elle existe, la quantité

E(X) :/Rx X fx(z) dz.

S. BALAC & O. MAZET - Introduction aux Probabilités 37



CHAPITRE 3. VARIABLES ALEATOIRES REELLES

REMARQUE Une v.a.r. n’admet pas nécessairement une espérance comme le montrent
les exemples suivants.
1. Considérons une v.a.r. absolument continue X suivant une loi de Cauchy de densité

1

fx(t) = A1+ 8)

On a bien une densité de probabilité puisque

1 1 +oo l/m =«
7dt:—[arctant] :—(—+—> =1
r T(1 4 12) 7T —o0 T N\2 2

t
(1 + ?)
n’a pas une intégrale généralisée convergente sur R (voir [Balac-Sturm|) donc la variable
aléatoire X n’a pas d’espérance.

mais la fonction
teR+—t fx(t) =

. . 1
2. La série numérique E — converge. Notons S sa somme (on peut démontrer que

keN
S = 72/6). Considérons une v.a.r. discréte Y telle que Y (Q) = N* dont la fonction de

masse est 1
p S
(On vérifiera a titre d’exercice que la fonction p définit bien une fonction de masse.) Cette
1
v.a.r. n’a pas d’espérance puisque i x P(Y =1) = S et que la série de terme général 1/i
i

diverge.

Plus généralement, on a le résultat suivant pour l’espérance d’une v.a.r. g(X).

PROPOSITION 25 1. Soit X une v.a.r. discréte sur l’espace probabilisé (€2, A, P) avec
XQ)={z; €R jeJ}ouJCN, et g: X(Q2) — R une application. Lorsque
cette quantité existe, l'espérance de la v.a.r. g(X) est définie par

E(g(X)) = ) g(;) x B(X = z).

jeJ

2. Soit X une v.a.r. absolument continue sur l’espace probabilisé (2, A, P) de densité
fx et g : R — R une application continue par morceaux. Lorsque cette quantité
existe, 'espérance de la v.a.r. g(X) est définie par

E(g(X)) = /Rg(t) X fx(t)dt.

REMARQUE Comme nous ’avons remarqué a la page 28, I’hypothése de continuité par
morceaux de g est plus restrictive que nécessaire. Il suffit que la fonction soit mesurable.
Cependant, les notions de la théorie de la mesure n’entrent pas dans le cadre de ce cours.
Nous nous contenterons donc en général de ’hypothése de continuité par morceaux, qui
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se trouve étre suffisante dans la grande majorité des cas qui nous intéressent.
L’existence de la quantité E(g(X)), dans la théorie de la mesure, est garantie par I’inté-

grabilité de g(X), c’est-a dire par la condition / 19(X (w))| dw < +00.
0

EXEMPLE Espérance de gain.

Un joueur mise et lance un dé. Il double sa mise si le dé fait 5 ou 6, la récupére s’il fait 4,
et la perd s’il fait 1, 2 ou 3. Quelle est ’espérance de gain du joueur?

On pose g : {1,2,3,4,5,6} — R, avec g(1) = g(2) = ¢g(3) = -1, g(4) = 0 et g(b) =
g(6) = 1. D’autre part, on considére l'espace probabilisé (€2, A, P), ou 2 ={1,2,3,4,5,6},
A = P(Q) et P est la probabilité standard associée au probléme, c’est-a-dire 1’équipro-
babilité. Sur cet espace probabilisé, considérons la v.a.r. X représentant le résultat du
lancer. X est donc ’application de €2 dans R qui & ¢ associe 7. L’espérance de gain est

E(9(X)) = > 90) x]P’(X:i):é(—1—1—1+0+1+1):—é.

L’espérance du gain est donc de —1/6 fois la mise. Un joueur prudent évitera donc ce jeu'!

REMARQUE L’espérance mathématique représente un gain moyen. Ce n’est pas néces-
sairement le plus probable et il se peut méme que le gain ne soit jamais égal a ’espérance.
Ainsi, si ’on considére le jeu consistant a lancer un dé 10 fois et ot ’'on gagne 6 bonbons
chaque fois que 'on obtient 1, on a une espérance de gain qui vaut 10 mais on ne pourra
jamais gagner 10 bonbons. On pourra en gagner 0,6,12,18,...,60 mais pas 10.

En anticipant sur la suite du cours, on peut dire que si I’on jouait un trés grand nombre
de parties successives de 10 lancers, la moyenne statistique des gains serait de 10 bonbons.
C’est en ce sens que 10 bonbons constitue la valeur moyenne de gain par partie, tout en
étant un gain impossible & obtenir au cours d'une unique partie.
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PROPOSITION 26 L’espérance possede les propriétés suivantes :

1. (Linéarité) Soient X wune v.a.r. continue, g, et go deuzx fonctions de R dans R
continues par morceaux et X\ un réel (ou : soient X une v.a.r. discréte, g, et go
deuz fonctions de N dans N). On a

E(91(X) + 92(X)) = E(91(X)) + E(92(X)),,

E(Ag1(X)) = AE (g1(X)).

2. (Positivité) Soient X une v.a.r. continue et g une fonction de R dans R positive
et continue par morceaux (ou : soient X une v.a.r. discréte et g une fonction de N
dans N positive). On a

E(g(X)) = 0.

3. (Croissance) Soient X une v.a.r. continue, gi et gy deuz fonctions de R dans R
continues par morceaur vérifiant* g; < go (ou : soient X une v.a.r. discréte, g; et
go deux fonctions de N dans N vérifiant® g1 < go). On a

E(g:(X)) < E(g2(X));

4. Si X est une v.a.r. constante sur Q (on parle de fonction déterministe) et g une
fonction quelconque alors,

DEMONSTRATION 1. Si X est une v.a.r. continue, alors

E(9:(X) + ga(X)) = / (01(0) + 92(8)) Fx(t)
- / g1 (1) fx () dt + / ga(t) fx (1) dt

= E(q:(X)) +E(g(X))

par linéarité de l'intégrale. De méme,

E (Ag1(X //\91 fx(t)dt = A /91 fx(t) dt = AE (g1(X)).
Si X est une v.a.r. discréte telle que X () = {z; € R, j € J} ou J C N, alors

E(g1(X)+9:(X)) = D (91(x)) + go(5)) x B(X = )

jeT
= Zgli ) x P(X +Zg2x] ) x P(X = ;)
JjeJ jeJ

= E(g:(X)) +E(g:(X))

par linéarité de la série. De méme,

E(Ag1(X)) =D Ag(z;) xP(X =z;) =X > g(z;) x P(X = ;) = AE (g1(X)) .

JjeJ jeJ
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2. Si X est une v.a.r. continue, alors

E(g(X)) = / o(t) Fx () dt.

R
Puisque fx est une fonction positive (¢’est une densité de probabilité) et que par hypothése
g est positive, le produit g x fx l'est aussi. Le résultat découle alors des propriétés de

positivité de I'intégrale. Le raisonnement est le méme pour le cas discret, car pour tout
entier 4, P(X = 1) > 0.

3. Il suffit de remarquer que : g; < go = g» — g1 > 0 et appliquer le résultat précédent a
la fonction g = g, — ¢;-

4. 51 X = a (avec a € R) alors X est forcément une v.a.r. discréte, et P(X = a) = 1. On
a donc E(g(X)) = g(a)P(X = a) = g(a) = g(X). 0

COROLLAIRE 1 Soient X une v.a.r. sur un espace probabilisé (0, A,P) et a un réel.
On a

1. E(a) =a (on considére ici la v.a.r. constante égale 4 a);
2. E(X) >0 si X est a valeurs positives.

3.2 Variance

DEFINITION 26 La variance de la v.a.r. X est définie, lorsque cette quantité existe, par

Var(X) =E (X — E(X))?).

On peut simplifier écriture de Var(X) en utilisant la propriété de linéarité de I’espérance :

Var(X) = E(X?— 2XE(X) + E(X)?)
= E(X?) - 2E(X)? + E(X)?
= E(X?)-E(X).

Posons pour simplifier, en supposant que cette quantité existe, m = E(X). On a alors
pour tout a € R,

E((X —a)?)

—m)?) +2(m - a)E(X —m)+E((m—a)?)

X
X —m)? —2(m—a)(X —m) + (m — a)?)
X
X —m)?) +E((m—a)?),
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car E(X —m) = E(X) —m = 0. On remarque que ¢ = m est la valeur qui minimise
E((X — a)?), et ce minimum est appelé la variance de X.

La variance d’une v.a.r. X est la quantité qui mesure la «dispersion» de X autour de
sa moyenne. Plus les valeurs de X sont dispersées, plus sa variance augmente. On peut
démontrer de plus que

X est une v.a.r. constante <= Var(X) = 0.

PROPOSITION 27 La variance vérifie les propriétés suivantes. Pour toute v.a.r. X et
pour tout réel \ on a

1. Var(X + \) = Var(X) ;
2. Var(AX) = MVar(X) ;
3. Var(X) > 0.

DEMONSTRATION 1. On a

Var(X + ) = E((X +A-EX + 1)) =E((X + A -E(X) - \)?)
= E((X - E(X))?) = Var(X).

2. On a
Var(AX) = E((/\X — IE(/\X))2) = IE()\Z(X — IE(X))Q) = A*Var(X).

3. Ona (X —E(X))? > 0, et le résultat découle de la positivité de I’espérance.

COROLLAIRE 2 Si X est une v.a.r. pour laquelle B(X) et Var(X) existent, alors la

v.a.r. Y définie par
v — X —E(X)

Var(X)

appelée variable centrée réduite associée a la v.a.r. X, vérifie :

Var(Y) = 1.

COROLLAIRE 3 $5i X est une v.a.r. pour laquelle E(X) et E(X?) existent, alors

E(X)? < E(X?).

DEMONSTRATION On a Var(X) = E(X?) — E(X)2. La positivité de la variance implique
la relation E(X)? < E(X?). 0
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L’inégalité donnée au corollaire 3 est un cas particulier de 'inégalité dite de Jensen : pour
toute fonction ¢ convexe, et pour toute v.a.r. X telle que E(X) et E(¢(X)) existent on a

P(E(X)) < E(o(X)).

DEFINITION 27 Soit X une v.a.r. telle que Var(X) eziste. L’écart-type de X est défini
par

Var(X).

3.3 Autres moments

On peut généraliser les définitions de ’espérance et de la variance d’une v.a.r.. Pour p € N,
on appelle moment d’ordre p de la v.a.r. X, le réel E(|X|?), quand il existe. On appelle
moment centré d’ordre p le réel E(|X — E(X)[P).

Ainsi, E(X?) est le moment d’ordre 2, et Var(X) le moment centré d’ordre 2.

3.4 [Espérance et variance pour les v.a.r. de lois usuelles
Loi uniforme X ~Uy, N eN*
On a

N N
]E(X)sz%—%Zk NH

et

2|H

N 1 N
Var(X) =) K== K
k=1 k=1

On rappelle, voir par exemple [Balac-Sturm|, que la somme des N premiers entiers vaut
N(N +1)/2 et que la somme des carrés des N premiers entiers vaut N(N? —1)/12.

Loi de Bernoulli X ~ B(1,p), p€]0,1]

On a
EX)=0xPX=0+1xPX=1)=np.

et

Var(X) = E(X?) —EX)?=0*xP(X =0)+ 1> x P(X =1) — p* = p(1 — p).
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Loi géométrique X ~ G(p), p€]0,1]

—+o00

On rappelle que pour tout 7 €] — 1, 1] la série géométrique Z r¥ converge uniformément
k=1
vers . On a alors
+o0 +0o0
E(X) = Y kp(l—p)'=p Y k(1-p)*!
k=1 k=1
d [ & d 1 d /1
= — — 1 — k = — — = — —_—
P dt( k_l( p)> P dt( 1—(1—p)) b dt( p)
1 1
= p _— =
P p

On montre sur le méme principe que

1-p

Var(X) = 2

Loi uniforme X ~U(a,b), a<b

On a
b

E(X) =/abﬁdt: [Q(bti a)] _ Qb:b—_a:) _ a-zi—b'

a

L’espérance de X est la moyenne entre a et b!
D’autre part, Var(X) = E(X?) — E(X)? avec

b 42 3 b 3 .3 2 2
]E(X2):/t—dt:[t7} _ b —a :b +ab+a’

b—a 3b—a)], 3(b—a) 3
et X
a+b a? + 2ab + b?
E(X)? = = -7 7
xr = (5) @wrv
d’ou

40 + 4ab + 4a® — 3a® — 6ab — 30>  a®>+ 0> —2ab _ (b—a)’
N 12 B 12 12

Var(X)

Loi normale X ~ N(m,0?), m,0 €R

E(X) = — /+mxexp(—@%'2n)2) dz.

210 J_w

On a
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. r—m . .
Le changement de variable y = —— permet d’obtenir la relation
o

500 = o [ oy men(-472) 0 dy

+o0 +oo
o 9 1/ 9
= 7 —y?/2) dy+mx — —y2/2) d
m/wyexp(y/) y+m ﬁwexp(y/)y
=1

-

+oo
= m-+

[~ exp(—y2/2)

~

=0

3
3

-

= m.

On vérifie par un calcul analogue que E(X?) = o + m?, ce qui permet d’établir que
Var(X) = o2

3.5 Inégalités remarquables

MARKOV, Andrei Andreievitch (1856, Ryazan (Russie) - 1922, Saint-Petersbourg).

On doit & cet éléve de Tchebychev de treés importants travaux en
calcul des probabilités et en théorie du potentiel. Il crée I'analyse
«markovienne» (macrolinguistique) qui a permis de grands progrés
dans le cryptage (& vocation militaire) mais aussi dans ’analyse
de documents anciens partiellement effacés. Il a introduit de fagon
précise les processus aléatoires (chaines de Markov) ce qui lui a
permis de donner une démonstration précise du théoréme cental

limite.

PRroOPOSITION 28 (Inégalité de Markov) Soit X une v.a.r.. Pour tout réel a stric-
tement positif on a

P(X| 2 ) < ZE(X]).

DEMONSTRATION Supposons que X est une v.a.r. admettant une densité fx (le cas gé-
néral est admis). On a

P(|X| > a) =P(X €] — 00, —a] U [a,+o0]) = /_a fx(t)dt+ +°° fx(t)dt.

a
t .
Or pour t € [a,+o0[ on a — > 1, d’oul
a

+o0o +o0o t

Fr(t)di < / Lpewar

a a
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t
De méme, pour ¢t €] — 0o, —a] on a |—| > 1, d’ott
a

[ooms [

fx(t)dt

Finalement,

P(IX|>a) < CE
= —D

t) dt + «(t) dt

—I—OO‘

IN

i
[ lel

o0

BIENAYME, Irénée Jules (1796, Paris - 1878, Paris).

Statisticien, inspecteur général des Finances, il appliqua la théorie
des probabilités aux calculs financiers et entra & I’Académie des
sciences en 1852. On lui doit les premiers travaux sur les variables
aléatoires.

ProPOSITION 29 (Inégalité de Bienaymé-Tchebychev) Soit X une v.a.r. et o un
réel strictement positif. On a

Var(X)

P(X —E(Y) > 0) <~

DEMONSTRATION 11 suffit d’appliquer I'inégalité de Markov a la v.a.r. Y = (X — E(X))?2
en prenant a = o. On a

P((X ~ E(X))? > 0?) < —E((X ~ E(X))?) =

Var(X)
a?
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TcHEBYCHEV, Pafnouty Lvovitch (1821, Saint-Petersbourg - 1894, Saint-Petersbourg).

Professeur de mathématiques a Saint-Petersbourg ou il créa sa
propre école de mathématiques ol enseignera, par exemple, Mar-
kov son éléve. Ses travaux portent essentiellement en théorie des
nombres et des probabilités. I1 fut membre de 1’Académie des
sciences de Saint-Petersbourg et des plus grandes académies d’Eu-

rope (de France, de Berlin, de Londres).

REMARQUE Les inégalités de Markov et de Tchebychev permettent d’avoir une estima-
tion de certaines probabilités alors que la densité de la v.a.r. mise en jeu n’est pas connue.
Toutefois, il faut prendre garde au fait que 'on a des inégalités et que la probabilité exacte
peut étre éloignée de la borne proposée.

EXEMPLE Le nombre de piéces fabriquées dans une usine en une semaine est une v.a.r.

d’espérance 50 et de variance 25.

On peut en utilisant I'inégalité de Markov, estimer la probabilité que la production de la

semaine & venir dépasse 75 piéces :

50 2

P(X >75) < —=-—.
(X 275) < 73

En utilisant I'inégalité de Bienaymé-Tchebychev, on peut estimer la probabilité que la

production de la semaine & venir soit strictement comprise entre 40 et 60 piéces. On a

25 1
P(| X — >10) < — = -

done P(|X — 50| < 10) >

>~ w

4 Caractérisation de la loi d’une variable aléatoire

Nous avons vu que la loi d’une v.a.r. est caractérisée par sa fonction de masse dans le cas
d’une v.a.r. discréte ou par sa densité dans le cas d’'une v.a.r. continue. Il existe d’autres
maniéres de caractériser la loi d’une v.a.r..

Ces différents outils de caractérisation vont en particulier s’avérer utiles a la résolution
du probléme-type suivant : soit X v.a.r. de loi connue, soit h : R — R fonction continue
par morceaux, quelle est la loi de la v.a.r. Y = h(X)?
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4.1 Caractérisation par la fonction de répartition

PROPOSITION 30 La fonction de répartition caractérise la loi de la v.a.r. associée.

DEMONSTRATION Dans le cas ou X admet une densité fx, on a vu que
x
veeR F@)= [ i
—00

autrement dit que Fx est 'intégrale indéfinie® associée & fx. Ceci implique que pour tout
réel z, F (z) = fx(x). Puisque la densité caractérise la loi, il en est donc de méme pour
la fonction de répartition.

Dans le cas ou X est une v.a.r. discréte, on a vu qu’il y avait une relation étroite entre
la fonction de répartition Fx et la fonction de masse (p;, 7 € N) (voir la proposition 23).
On peut en particulier, calculer la fonction de masse grace a la fonction de répartition :
Si X(Q) ={z; €R, jeJ}avec J C Non a la relation

VieN, p;= FX(»"UJ') - FX(»"Uj—l)-

La encore, puisque la fonction de masse caractérise la loi, il en est donc de méme pour la
fonction de répartition. o}

EXEMPLE Soit X une v.a.r. de loi uniforme U([0,1]) et Y la v.a.r. définie par Y = X2.
Déterminons la loi de Y. La fonction de répartition de X est définie par

0 siz <0
Fx(z)=< z si0<z<1
1 siz>1

°5 o

F1G. 3.4 — Fonction de répartition et densité de X

Voir par exemple [Balac-Sturm]|.
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et
z si0<yx<1cest-a-diresi0<z<1
P(X < yi) = | V7 SOS VRS icmradiesitss s
1 si /z > 1 clest-a-dire si z > 1
donc
0 siz <0
Fy(z) =4 z si0<z<1 .
1 siz>1
On en déduit la densité de Y :
0 siz <0
1 .
fY(.’E):F}’;(ZE): ﬁ si0<z<1 ,
0 siz>1

et on peut poser par exemple fy(0) = fy(1) = 0.

Fi1G. 3.5 — Fonction de répartition et densité de Y

4.2 Autre caractérisation

Nous nous placons ici uniquement dans le cas d’une v.a.r. continue.

PROPOSITION 31 Soit X une v.a.r. admettant une densité fx. S’il existe, pour toute
fonction ¢ bornée et continue par morceaux sur R, une fonction f ne dépendant pas de

¢ telle que lespérance de ¢(X) admette la formule de représentation intégrale

E((X)) = / o(2) () dz,

alors f = fx, autrement dit f est la densité de X.

DEMONSTRATION Ce résultat est admis.
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EXEMPLE Soit X ~ U([0,1]) et Y = X?. La densité de la v.a.r. X est fx(z) = I (2).
Soit ¢ : R — R une fonction bornée et continue par morceaux. Alors

E(p(Y)) = / p(a?) di = / B(y) = dy,

la derniére égalité résultant du changement de variables y = 22 sur [0, 1]. Puisque l'on a
égalité pour toute fonction ¢, on en conclut d’aprés la proposition 31 que

fry) = %Hm( )-

4.3 Fonction caractéristique, fonction génératrice

Nous allons définir les fonctions les plus utilisées pour la caractérisation de lois : la fonction
caractéristique pour une v.a.r. quelconque et la fonction génératrice dans le cas d’une v.a.r.
discréte. Nous notons i I'unité imaginaire telle que i = —1.

DEFINITION 28 On appelle fonction caractéristique de la v.a.r. X la fonction de R

dans C définie par _
ox(t) =E(™X) ViteR

Nous utiliserons souvent le fait que la fonction caractéristique, comme son nom l'indique,
caractérise la loi de la v.a.r. associée (i.e. la donnée de la fonction ¢x suffit & determiner
complétement la loi de X).

THEOREME 2 Deuz v.a.r. définies sur un méme espace probabilisé ayant méme fonction
caractéristique ont méme loi.

DEMONSTRATION Ce résultat est admis. o]

PROPOSITION 32 La fonction caractéristique ¢x d’une v.a.r. X posséde les propriétés
suivantes :

1. ¢x est une application continue G valeurs dans {z € C, |z| < 1} et on a ¢x(0) = 1.
2. Si ¢x est deuz fois dérivable en 0, alors E(X) et B(X?) ezistent’ et

E(X) = —igk(0),
E(X?) = —¢%(0).

3. Soient a et b deuz réels et Y la v.a.r. définie par Y = aX + b. La fonction carac-
téristique ¢y de la v.a.r. Y vérifie

oy (t) = e®px(at) VteER
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DEMONSTRATION On se place dans le cas ot X admet une densité. On a pour tout ¢ € R,

ox(0) = [ e (o) do.

1. La continuité de ¢x est admise. On a

ox(0) = /RfX(x) dr =1

car fx est une densité de probabilité. Par ailleurs,

/eit‘”fx(m)dx g/\fx(x)\ dz = 1
R R

ce qui implique que ¢x est une application a valeurs dans {z € C, |z| < 1}.

[ox(t)] =

2. Si ¢x est deux fois dérivable, nous avons
o0 = [ () fx(a)da = [ iae fx(a)da,
la premieére égalité étant admise, d’ou
0x(0) =i [ afx(o) do = iB(Y),
ce qui implique que E(X) = —i¢’x(0). On procéde de méme pour ¢’ (0).
3. On a pour tout réel t,

Py (1) = /R @) fy(x) dz = € / 1 fx () dx = e x (at).

R

Dans le cas ol X est une v.a.r. discréte, il est souvent plus commode de considérer la
fonction génératrice de X plutdt que la fonction caractéristique.

DEFINITION 29 Soit une X wv.a.r. discréte a valeurs entiéres. On appelle fonction gé-
nératrice de X la fonction définie pour tout s € [—1,1] par

Gx(s) =E(s¥) = Zsj X P(X = j).

jeEN

PROPOSITION 33 La fonction génératrice d’une v.a.r. entiére X a les propriétés sui-
vantes :
1. la série Zsj X P(X = j) est une série qui converge pour tout s € [—1,1];
jEN
2. Gx est continue sur [—1,1] et infiniment dérivable sur] —1,1[;

"On dit que X est respectivement intégrable et de carré intégrable.
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DEMONSTRATION Ce résultat est admis. o]

THEOREME 3 Deuz v.a.r. entieres définies sur un méme espace probabilisé ayant méme
fonction génératrice ont méme los.

DEMONSTRATION Ce résultat est admis. o]

PROPOSITION 34 La fonction génératrice d’une v.a.r. entiere X a les propriétés sui-
vantes.

1. Gx(1) =1, Gx(0)=P(X =0).

2. Gx(1) =E(X), G%(1)= IE(X(X - 1)) et plus généralement Vk € N*,

Ggf)(l):]E(Xx(X—l)x---x(X—k—i—l)).

DEMONSTRATION 1. On a

Gx(1) =Y P(x = j) =P(JIX = j]) =P(@) =1.

JEN jEN
Par ailleurs pour tout s € [—1, 1],
Gx(s) =) §P(X =j)=P(X =0)+ »_ sP(X =),
jeN jeN:
donc Gx(0) = P(X = 0).
2. On a pour tout s € [—1,1],
Gly(s) =Y js'"P(X = j)
jeN

donc G (1) = Zj]P’(X = j) = E(X) par définition de ’espérance. De méme, pour tout

jeN
s € [-1,1],
G(s) =) 3 = 1)s'*P(X = j)
jeN
d’ot G% (1) = Zj(j —1)P(X =j) = E(X(X —1)). On utilise ensuite un raisonnement
jeN

par récurrence pour établir que

Gg';)(l)zlE(Xx(X—l)><...><(X—k—|—1)).
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4.4 Fonctions caractéristique et génératrice de certaines lois
Loi binomiale X ~ B(n,p)

- Fonction caractéristique : pour ¢ € R
¢X(t) :]E(eitX) — ch k n k itk

_ ch pezt 1_) —k
= (pe +(1-p)",

d’aprés la formule du bindéme.
- Fonction génératrice : pour s € [—1,1]
Gx(s) = (ps+(1—-p)".

Loi de Poisson X ~ P(})

- Fonction caractéristique : pour ¢t € R

pLEy Aett)k i i
_ Ze—)\peztk _ Ze—x( Z!) — e = A1)

keN ’ keN
+o0o
u uk 2
car ¢ = E o pour tout réel wu.
k=0

- Fonction génératrice : pour s € [—1,1]

Gx(s) = e,

Loi normale X ~ A (m,o?)

Fonction caractéristique : pour ¢t € R

On vérifie alors aisément que

et que

d’oul on déduit que
Var(X) = E(X?) - E(X)* = o”.
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Loi de Cauchy

Cette loi est définie par la densité

1
f)=——— teR
Sx (1) (1 +12)
On vérifie que
1 1 +00
/ dt = — [arctan t} =1,
g (1 +1?) ™ —o0
mais la fonction
t— ———
(1 + t?)

n’est pas intégrable sur R, donc la variable aléatoire X de densité fx n’a pas d’espérance.
On peut vérifier que ¢x(t) = e/l n’est pas dérivable en 0.
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Chapitre 4

Vecteurs aléatoires

Pour épargner au lecteur des lourdeurs de notation pouvant affecter la compréhension,
les définitions et résultats concernant les vecteurs aléatoires sont d’abord énoncés dans le
cas simple ot les vecteurs ont seulement deux composantes, c’est-a-dire le cas des couples
aléatoires. Une généralisation aux vecteurs quelconques est donnée au paragraphe 4.

1 Couple de variables aléatoires réelles

On appelle tribu borélienne de R? la tribu engendrée par la famille des ouverts de R?,
c’est-a-dire la plus petite tribu contenant tous les ouverts de R2. On appelle borélien de
R? un élément de la tribu borélienne de R?.

DEFINITION 30 Soient (2, A,P) un espace probabilisé et X ’application

X:0Q0 — R
w — (Xi(w), Xo(w)).

On dit que X est un couple aléatoire si pour tout borélien B de R?, X' (B) € A.

On démontre facilement qu'un couple aléatoire (c’est-a-dire un vecteur aléatoire de R?)
X = (Xy, X3) est un couple de deux v.a.r. X; et Xo.

1.1 Lois d’un couple de variables aléatoires réelles

DEFINITION 31 On appelle fonction de répartition du couple de v.a.r. X = (X1, X>)
Dapplication Fx : R2 — R définie par

Fx(xl,.fg) = P(Xl < .Tl,XQ < 3?2) \V/($1,$2) € ]RZ
ou on a noté

P(X; <z1,Xo <) = P([X; <z]N[Xy < a5))
= P{w €, Xi(w) <z, Xo(w) < 22}).
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ProOPOSITION 35 Si X = (X1, Xy) est un couple de v.a.r. de fonction de répartition
Fx alors on a

lim Fx(z,z)=0 et lim Fx(z,z)=1.

T——00 r—+00

DEMONSTRATION La démonstration de ce résultat est analogue & celle de la proposi-
tion 22, page 29. 0]

DEFINITION 32 Le couple de v.a.r. X = (X1, X3) défini sur I’espace probabilisé (2, A, P)
est dit discret s’il est 4 valeurs dans un sous-ensemble D = X (Q) fini ou dénombrable
de R?. La fonction
D — [0,1]
(k1, ko) +— P(Xy =k, Xy = ko)

est alors appelée fonction de masse du couple de v.a.r. X = (X1, Xs).

DEFINITION 33 Le couple de v.a.r. X = (X1,Xs) est dit absolument continu de
densité fx, si sa fonction de répartition Fx admet la représentation intégrale suivante :

T1 T2
Fx(21,22) :/ / [x(ti,ta) dty dis.

Les fonctions de répartition Flx, et Fx, des v.a.r. X; et X5 sont données en fonction de
la fonction de répartition du couple de v.a.r. X = (X;, X3) par

Fx,(z) = P(X;<z,X,€eR) = yli)ElOOFX(x,y) Vo € R,
Fx,(y) = P(XhieR Xy <y) = lim Fx(z,y) VyeR

Dans le cas ou le couple de v.a.r. X = (X1, X5) admet pour densité fx, on a

T +oo
}T'X1 (:v) = / fX(tla tg) dt2 dtl Vx S R,

—00 J =00

Y +oo
Fx,(y) = / fx(ti,ty) dty dt,  Vy e R

—00 —00

DEFINITION 34 Pour k € {1,2}, on appelle Kleme o marginale du couple de v.a.r.
X = (X1, Xy) la loi de la variable aléatoire réelle Xj,.

Si X = (X3, Xs) est un couple de v.a.r. discret les lois marginales des v.a.r. X; et X, ont
respectivement pour fonctions de masse les applications :

pr:ki €N — ZP(XI :kl,XQZkQ),
ko €N
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pQ:kQEN — ZP(Xlzkl,XQZkQ).

k1 EN

Si X = (X3, Xs) est un couple de v.a.r. absolument continu de densité fx, les lois margi-
nales des v.a.r. X; et X, ont respectivement pour fonctions densités les applications :

le 1T € R — /fx($1,$2) d.’L‘Q,
R

fX2 Z,’EQER — /fx(ﬂfl,ﬂfz) d.’IZ’l.
R

1.2 Moments d’un couple de variables aléatoires réelles

Espérance d’un couple de v.a.r.

DEFINITION 35 On appelle espérance du couple de v.a.r. (X1, X,) l’élément de R?
défint par
E(Xl,XQ) = (E(Xl),E(XQ))

PROPOSITION 36 Soit X = (X1, X5) un couple de v.a.r. discret défini sur un espace
probabilisé (2, A, P) a valeurs dans D = X () sous-ensemble fini ou dénombrable de
N2. Soit h : R2 — R une fonction bornée et continue par morceauz. La v.a.r. discréte
7 = h(X1, X3) a pour espérance

E(Z)= Y Ak k) x P(X1 = ki, Xy = ky).

(k1,k2)€D

DEMONSTRATION Considérons les ensembles finis ou dénombrables suivants,

D = X(@ = {k=(hk) €N, e k=X@w)},

O = h(D) = {zER, Ik = (ky, ko) € D z:h(kl,kg)}.

On a alors,

E(Z) = Y 2P(Z=2)

zeQY

= Z z P(h(X1, X,) = 2)
- Zi:h(kla ko) P(h(X1, X3) = h(k1, ko))
= ) bk, ko) P((X1, X3) = (ky, ks)).

S. BALAC & O. MAZET - Introduction aux Probabilités 57



CHAPITRE 4. VECTEURS ALEATOIRES

PROPOSITION 37 Soient X = (X1, Xs) un couple de v.a.r. absolument continu admet-
tant pour densité U'application fx de R? dans R et h : R2 — R une fonction bornée et
continue par morceauz. La v.a.r. Z = h(X1, X3) a pour espérance

E(Z) = o h(tl,tz) X fx(tl,tz) dtl dtz

lorsque cette intégrale existe.

COROLLAIRE 4 Soient X = (X1, X3) un couple de v.a.r. et (a,b) deuz réels. On a

E(aX, +bX) = aB(X,) + bE(X,).

Covariance

DEFINITION 36 Soit (X1, X2) un couple de v.a.r.. Si E(X,) et E(Xy) existent, on ap-
pelle covariance du couple de v.a.r. (X1, X3) le réel

Cov(X1, X) = 1[4:(()(1 —E(X))) x (Xo — IE(XQ))).

PROPOSITION 38 La covariance du couple de v.a.r. (X1, Xo) vérifie les propriétés sui-
vantes :

1. COV(Xl,Xl) = Var(Xl) 5
2. COV(Xl,XQ) = E(XlXQ) — ]E(Xl) X E(XQ) 5

3. Vapplication (X1, X3) — Cov(Xi, X3) € R est une forme bilinéaire symétrique :
pour toutes v.a.r. Xq,Y1, Xo,Ys et pour tous réels a,b on a

(a) Cov(aX; + bY1, X5) = aCov(Xy, X5) + bCov(Yi, Xy),
(b) Cov(X1,aXs + bYs) = aCov(X1, Xa) + bCov(X1, Ya),
(c) Cov(X1,Xs) = Cov(Xs, X7).

DEMONSTRATION 1. Cette relation est évidente d’aprés la définition de la variance
d’une v.a.r..

2. On a

Cov(X1, Xp) = E(X1Xs —E(X1)X, — X1E(X2) + E(X:) x E(X>))
= E(_XlXQ) — ]E(Xl) X ]E(Xg)

d’aprés les propriétés de linéarité de 1’espérance.
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3. La bilinéarité de ’application covariance résulte des propriétés de linéarité de I’es-
pérance. Elle est clairement symétrique d’aprés sa définition.
0]

1.3 Fonction caractéristique et fonction génératrice

DEFINITION 37 On appelle fonction caractéristique du couple de v.a.r. X = (X1, X
la fonction ¢x définie de R?> dans C par

Ox(t1,t2) =E (ei(t1X1+t2X2)) _

DEFINITION 38 On appelle fonction génératrice du couple de v.a.r. X = (X1, X>)
la fonction Gx définie de R? dans R par

GX(Sl,SQ) = E(Sflsgh) .

1.4 Variables aléatoires conditionnelles

Soient (X,Y’) un couple de v.a.r. discretes a valeurs dans N? et j un entier tel que
P(Y = j) # 0. Considérons la fonction

pieN—P(X =i|Y=74)€el0,1]

On a d’une part,

P(X=i|Y=j)=

et d’autre part

PY=j)=) PX=iY=j) e PX=i)=)» PX=4iY=j)

ieN jeN

On en déduit que

L e PX =iy =)
270 = 2 "y =)

1EN 1EN
1 1
= — ) PX=§Y=j) = —PY=j
P(Y:ﬁ% ( ) P(Y =) ( )
= 1’

autrement dit que la fonction p définit une fonction de masse.
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DEFINITION 39 (Cas discret) Soient (X,Y) un couple de v.a.r. discretes & valeurs
dans N? et j un entier tel que P(Y = j) # 0.
On appelle loi conditionnelle de X sachant [Y = j] la loi définie par la fonction de
masse

p:i € N— P(X =Y =j).

On appelle fonction de répartition conditionnelle de X sachant [Y = j| Uappli-
cation F)[(Y:ﬂ de R dans [0, 1] définie pour tout z € R par

P(X < z,Y = j)

FYF(z) =P(X <aly =j) = P(Y = j)

REMARQUE On peut définir de maniére analogue la loi conditionnelle de X sachant
[Y < j], et plus généralement la loi conditionnelle de X sachant n’importe quel événement
dépendant de Y.

Soient (X,Y’) un couple de v.a.r. de densité f(xy). La seconde loi marginale du couple
admet pour densité I'application

friteR+— / fixyy(s,t)ds.
R

Considérons la fonction f)[(y =¥ définie par

f(X,Y) (5,9)
fr(y)

)[{:y]:seRe S

Il s’agit d’une fonction positive qui vérifie

[V =y . fxy)(s,9)
/fo (8) ds = /R fY(?/) ds
1

1
= fY—(y)/Rf(X,Y)(S;y) ds = fY—(y)fY(y)
= 1.

On en déduit que la fonction f)[? = Jéfinie une densité de probabilité.

DEFINITION 40 (Cas continu) Soient (X,Y) un couple de v.a.r. de densité fixy) et
fy la densité de Y. Pour y € R fizé tel que fy(y) # 0, la fonction f)[g/:y] définie par

[Y=y] - f(X,Y)(S:y)
x (8)= 7fy(y)

est une densité de probabilité appelée densité conditionnelle de X sachant [Y = y].
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2 Indépendance de 2 variables aléatoires réelles

2.1 Définition

DEFINITION 41 Deux v.a.r. X et Y sont dites indépendantes si

VieRVy €R, P(X <,V <y)=PX <z)xPY <y).

REMARQUE Si Fx, Fy désignent les fonctions de répartition des v.a.r. X et Y et Fixy)
la fonction de répartition du couple (X, Y'), on peut reformuler la définition de la maniére
suivante,

Ve e RVy €R, Fixy(z,y) = Fx(z) x Fy(y).

PROPOSITION 39 1. Les deux v.a.r. discrétes a valeurs entiéres X et'Y sont indé-
pendantes si et seulement si

VieNVjeN, PX=iY =3 =PX =1i)xPY =j).

2. Soient fixyy la densité du couple de v.a.r. absolument continu (X,Y) et fx et fy
les densités marginales des v.a.r. X etY. Les v.a.r. X et'Y sont indépendantes si
et seulement st

Vs e RVt € R, f(ny)(S,t) = f)((s) X fy(t)

2.2 Indépendance et moments

PROPOSITION 40 Soient X, Y deuz v.a.r. indépendantes. On a,
1. E(XY)=EX) xE(Y);
2. Var(X +Y) = Var(X) + Var(Y) .

DEMONSTRATION 1. Supposons que X et Y sont deux v.a.r. continues de lois de densité
fx et fy respectivement. Puisque ces 2 v.a.r. sont indépendantes, la loi jointe du couple
(X,Y) a pour densité fxy): (z,y) € R — fx(z) x fy(y). Ainsi,

E(XY) = / zy fix,y) dr dy
R?

= /Rz zy fx(x) x fy(y) dz dy
_ (/Rmfx(aﬁ) dx) x (/Ry 1) dy) — E(X) x E(Y).
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Le cas de v.a.r. discrétes se démontre d’'une maniére analogue. On a

E(XY) = Y lkiks P(Xy = ki, X5 = ky)
(kl,k2)6N2
= Y kaky P(Xy = ki) x P(X; = ko)
ki1€Nk3)eN
= > ki P(X1=k)x Y ky P(Xp = k)
k1€N k2)eN
= E(X)x E(®Y).

2. 0On a

Var(X +Y) = E(X +Y)?) -E(X +Y)?
E(X?) + 2E(XY) + E(Y?) — E(X)? — 2E(X)E(Y) — E(Y)?.

Or puisque X et Y sont indépendantes on a E(XY') = E(X) x E(Y), donc

Var(X +Y) = (E(X?) - ]E(X)Q) + (E(Y?) - E(Y)?) = Var(X) + Var(Y).

Cette proposition nous donne une condition suffisante pour que I’espérance d’un produit
soit égal au produit des espérances de 2 v.a.r.. La condition n’est pas nécessaire et vérifier
que E(XY) = E(X) x E(Y) n’assure pas que les deux v.a.r. X et Y sont indépendantes.
Par contre en prenant la contraposée de cette assertion, on obtient un critére pour établir
que deux v.a.r. X et Y ne sont pas indépendantes; il suffit que E(XY') # E(X) x E(Y).

Le lien profond existant entre 'indépendance et la «séparation des variables» est plus
généralement exprimé dans le théoréme suivant.

THEOREME 4 Soient X, Y deuz v.a.r. et g, h deux fonctions de R dans R. Si les v.a.r.
X et'Y sont indépendantes alors les deux v.a.r. g(X) et h(Y') sont indépendantes et

E(g(X)h,(Y)) - ]E(g(X)) x ]E(h(Y))

deés que ces quantités existent.

DEMONSTRATION Ce résultat est admis. o]
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2.3 Coefficient de corrélation

L’indépendance des 2 v.a.r. X et Y implique que E(XY') = E(X) x E(Y'). Il est possible
d’exploiter cette propriété pour mesurer le «taux de dépendance» des deux v.a.r. au moyen
d’un réel appelé coefficient de corrélation.

On note ox = /Cov(X, X) = 4/Var(X) (voir la définition 27 page 43).

DEFINITION 42 On appelle coefficient de corrélation de X et'Y le réel défini par

Cov(X,Y)

Ox0y

p(X,Y) =

PROPOSITION 41 Pour toutes v.a.r. X et Y, on a [p(X,Y)| < 1.

De plus, le coefficient de corrélation p(X,Y) est un indicateur de la fagon dont X et'Y

sont corrélées, au sens o,

- si X et'Y sont indépendantes, alors p(X,Y)=0;

- sl existe un couple (a,b) € R? tel que Y = aX + b, alors |p(X,Y)| =1 (la réciproque
est vraie).

DEMONSTRATION Rappelons que pour tout réel A on a Var(X 4+ AY) = 0 si et seulement,
si X + A\Y est constante (voir la remarque de la page 42). Calculons, pour A € R, la
variance de X + \Y,

Var(X + 1Y) = E((X +\Y —E(X +2Y))?)
E((X —E(X) + A(Y - E(Y))?)

- ]E((X E(X))? + X (Y —E(Y))? + 2M(X — E(X)) x (Y — E(Y)))

= ]E((X — E(X))? ) + AQE((Y - E(Y)V)
—|—2)\1E((X CE(X)) x (Y — ]E(Y)))

= Var(X) + )\2Var(Y) +2XCov(X,Y).

On sait que VA € R, Var(X + AY') > 0, voir la proposition 27 page 42. Le polynome

P(X) = A*Var(Y) 4+ 2ACov(X,Y) + Var(X)

ne peut donc pas posséder 2 racines réelles distinctes (sans quoi il serait a valeurs né-
gatives sur un intervalle de longueur non nulle). On en déduit que son discriminant
A = Cov(X,Y)? — Var(X) x Var(Y) est nécessairement négatif. On a

Cov(X,Y)? — Var(X) x Var(Y) <0 <= Cov(X,Y)? < Var(X) x Var(Y)
< |Cov(X,Y)| < oxoy
= p(X,Y)[ <1,

ce qui achéve la démonstration. L’égalité est réalisée lorsque Var(X + \Y") = 0 c’est-a-dire
lorsque X + AY est constante.
Enfin, si X et Y sont indépendantes alors Cov(X,Y) =E(XY) -E(X) xE(Y)=0. o
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ATTENTION Ce n’est pas parce que p(X,Y) = 0 que X et Y sont indépendantes. Par
exemple, on définit les deux variables aléatoires U = X +Y et V=X —-Y ot X et YV
sont deux variables aléatoires indépendantes de loi de Bernoulli B(1,p). On peut vérifier
que le coefficient de corrélation du couple (U, V) vaut 0 mais que les variables aléatoires
U et V ne sont pas indépendantes.

REMARQUE Soient X et Y deux v.a.r.; on a
Var(X +Y) = E((X+Y -EX +Y))?)
= E((X -E(X) +Y —E(Y))")
= E((X —E(X)? + (Y —E(Y))* + 2(X — B(X)) x (Y = E(Y)))
= Var(X) + Var(Y) + 2Cov(X,Y).

Donc si X et Y ne sont pas corrélées (c’est le cas si elles sont indépendantes, voir la
proposition 40) alors

Var(X +Y) = Var(X) + Var(Y).

Ce résultat se généralise pour un nombre quelconque de variables aléatoires.

2.4 Indépendance et fonction caractéristique

L’indépendance de deux variables aléatoires peut s’exprimer a 1’aide des fonctions carac-
téristiques et le cas échéant des fonctions génératrices.

THEOREME 5 1. Soit (X,Y) un couple aléatoire de fonction caractéristique ¢xy).
Soient ¢px et ¢y les fonctions caractéristiques des deuz v.a.r. X etY.
Les v.a.r. X et Y sont indépendantes si et seulement si

Vs,t €R,  ¢xy)(s,t) = dx(s) x oy (),

2. Soit (X,Y) un couple aléatoire discret de fonction génératrice G x,y). Soient Gx et
Gy les fonctions génératrices des deux v.a.r. X etY.
Les v.a.r. X et Y sont indépendantes si et seulement si

Vs, t € [-1,1], Gxy)(s,t) = Gx(s) x Gy(t).

3 Somme de deux variables aléatoires indépendantes

3.1 Loi de la somme de deux variables aléatoires
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PROPOSITION 42 Soient X et Y deux v.a.r. indépendantes. La loi de la v.a.r. X +Y

est obtenue en effectuant le produit de convolution des lois de X et de Y, autrement
dit,
1. st X etY sont des v.a.r. discrétes, on a Vk € N,

P(X +Y =k) =) P(X =k—i)xPY =i);
€N

2. st X etY sont des v.a.r. continues de densités respectives fx et fy, on a Vx € R,

fxyv(z /fXﬂf—tXfY()

DEMONSTRATION Soient X et Y deux v.a.r. discrétes a valeurs dans N, indépendantes.
On a
P(X+Y =k) = (U[Y—z X—i—Y—k])

1EN

=0
= ) P(Y =din[X=k-Y]

1EN

= ) P(X=k—iY =i
1EN

= ) P(X =k—i) xPY =),
€N

car X et Y sont indépendantes. Ce qui démontre la proposition dans le cas discret.

La démonstration s’étend formellement dans le cas des variables continues. Nous ne
nous apesantirons pas sur la justification de 'existence et 'explicitation des dérivées des
fonctions intégrales. Soient X et Y deux v.a.r. continues, indépendantes, de densités res-
pectives fx et fy. On note f(xy) la densité du couple (X,Y’). La fonction de répartition
de la v.a.r. X +Y vérifie

Fx+y(2) = X+Y<Z)

- / oo (@ y) drdy o A={(z,y) R, 34y < 2}

Or les v.a.r. sont indépendantes donc

Fxiy(z) = / fx(z) fr(y) dz dy.

=/fy ( fx()dx)dy

car pour y ﬁxe x varie entre —oo et z — y

= /Rfy(y) (/_;fx(t—y) dt) dy

par le changement de variable ¢t = x + y.
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On peut en déduire que la fonction de densité de la v.a.r. X 4+ Y vérifie

fxiv(z) = _FX—I—Y(
- Ja (8 e o
— [ el £z =) an.

COROLLAIRE 5 Sotent X, Y deux v.a.r. continues de densités respectives fx et fy et
h une fonction continue par morceaur. On a

E(h(X +Y)) = / B(t) % (Fx + f)(2) dt

ot x désigne le produit de convolution des fonctions fx et fy.

On a donc

E(h(X +Y)) :/Rh(t) x /fo(x—t) x fy(t)dt

3.2 Fonction caractéristique de la somme de deux variables aléa-
toires

PROPOSITION 43 Si X et Y sont deux v.a.r. indépendantes de fonctions caractéris-
tiques ¢x et ¢y alors la fonction caractéristique ¢x v de la v.a.r. X +Y est donnée
par

dxiv(t) = ox(t) x ¢y(t) VieR

DEMONSTRATION On a

E (eit(X—I—Y)) - F (eitXeitY)
E (™) E(e®) par indépendance de X et Y
= ¢x(t) oy (t).

PROPOSITION 44 Si X et Y sont deuzr v.a.r. discrétes indépendantes de fonctions gé-
nératrices Gx et Gy alors la fonction génératrice Gx,y de X +Y est donnée par

Gx+y(8) = Gx(S) X Gy(S) Vs € [—1, 1]
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COROLLAIRE 6 Soient X et Y deux v.a.r.indépendantes suivant une loi de Poisson de
parameétres respectifs A et p. La v.a.r. X +Y suit une loi de Poisson de paramétre A+ p.

DEMONSTRATION On a Vk € N,

_ pt
et PY =k)=e “k'

On peut calculer les fonctions génératrices de X et de Y. On a pour s € [—1,1],

Gx(s) Zsk —A —)\Z kl — e s e(s—l))

keN keN

et par un calcul analogue on vérifie que Gy (s) = e**~1). On obtient donc pour fonction
génératrice de X + Y,

Gxiv(s) = Gx(s) Gy(s) = er5=1) ouls=1) — (A+u)(s—1)

On a donc montré que la v.a.r. X + Y suit une loi de Poisson de paramétre A\ + p. o]

Les définitions et résultats énoncés dans ce paragraphe pour la somme de deux v.a.r.
s’étendent a la somme de n v.a.r., voir le paragraphe 4.6.

4 Vecteurs aléatoires

4.1 Définition

On appelle tribu borélienne de R*,n € N*, la tribu engendrée par la famille des ouverts
de R, c’est-a-dire la plus petite tribu contenant les ouverts de R”. On appelle borélien
de R™ un élément de la tribu borélienne de R™.

DEFINITION 43 Soient (2, A, P) un espace probabilisé et X ’application

X:Q0 — R
w — (Xi(w),..., Xp(w)).

On dit que X est un vecteur aléatoire de R" si pour tout borélien B de R*, X~}(B) €
A.

On démontre facilement que chaque composante X, £ =1,...,n, d'un vecteur aléatoire
est une variable aléatoire réelle X, : Q — R.
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DEFINITION 44 On appelle fonction de répartition du vecteur aléatoire X 'application
Fy : R* — R définie par

Fx(fﬂl,...,l‘n) :P(Xl Sﬁl,...,Xn Smn) V(l'l,...,.l'n) ER”
ol on a noté

PROPOSITION 45 Si X est un vecteur aléatoire de fonction de répartition Fx alors
on a

lim Fx(z,...,z) =0,

r—r—00
et

lim Fx(z,...,z)=1.
T—+00

DEMONSTRATION La démonstration de ce résultat est analogue a celle de la proposition
22, page 29. 0]

4.2 Loi d’un vecteur aléatoire

DEFINITION 45 Un vecteur aléatoire X défini sur un espace probabilisé (Q, A, P) est
dit discret s’il est a valeurs dans un sous-ensemble D = X () fini ou dénombrable de R™.
La fonction
D — [0,1]
(kla---;kn) — P(Xl = kl;---an :kn)

est appelée fonction de masse du vecteur aléatoire X.

DEFINITION 46 Un vecteur aléatoire X est dit absolument continu de densité fx, si sa
fonction de répartition Fx admet la représentation intégrale suivante :

Fx(.’L'l,...,l'n):/ fx(tl,...,tn)dtl...dtn,
A

ol
A =] — 00,21 X] — 00, 29| X ... X]| — 00,2z, CR".

REMARQUES 1. On a

/fx(tl,,tn)dtldtn:/ / fx(tl,,tn)dt”dtl
A —00 —0o0
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2. Si Fx est de classe C™ sur R", alors la fonction de répartition est liée a la fonction
densité par la relation
an

[x(t, ... ty) TS X (4 tn)

Par abus de langage, on utilise le terme vecteur aléatoire continu au lieu de vecteur
aléatoire absolument continu.

Comme dans le cas d’une variable aléatoire, on peut vérifier que la fonction de répartition
ainsi que la fonction de masse dans le cas discret ou la fonction de densité dans le cas
continu, définissent et caractérisent la loi du vecteur aléatoire X . Ces fonctions permettent
aussi de déterminer les lois de chacune des variables aléatoires réelles définies comme
composantes du vecteur X.

DEFINITION 47 On appelle pieme o4 marginale k € {1,---,n} du vecteur aléatoire
X = (Xy,...,X,) de R" la loi de la variable aléatoire réelle Xj,.

PROPOSITION 46 La fonction de répartition de la v.a.r. Xy est donnée pour x € R par

= PX;€eR,..., X 1R Xy <z, X1 €R,..., X, €R)

= lim Fx(y, -, %%, Y, ---,Y),
Yy——+00
ot z figure & la k€M place dans (y,...,y,2,Y,...,y).
De plus, dans le cas ou le vecteur aléatoire continu X admet pour densité fx, on a

Z

Fx,(z) = P(X; < z) :/

—0oQ

( Fx(tr, .o tn) Aty ... dtp_y dtgs ... dtn) dty.
Rn—1

DEMONSTRATION Laissée au lecteur. o]

4.3 Exemples de lois pour un vecteur aléatoire
Loi multinomiale M(n,pi,...,px), ou n € N* et p; €]0,1[ Vi € {1,...,k}.
La fonction de masse est définie par

n!
]P(X1=7]1,---,Xk=77k):mp?l X ... X i Vnz(m,...,nk)EN’“,
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avec an—net sz— 1.

La 101 multlnomlale est la généralisation de la loi binomiale. On a

Loi normale n-dimensionnelle N'(m,%) oa m = (my,...,m,) € R" et ¥ est une
matrice carrée d’ordre n, symétrique définie positive.

La fonction densité est définie pour tout ¢t = (¢y,...,%,) € R* par

1 1 Ts—1
fx(tr,. oo tn) = ()%—dmexp <_§(t_ m) N7 (t — m)) ,

ot (t —m)T désigne le vecteur colonne de composantes t; — m;, i € {1,...,n} et X1
I'inverse de la matrice X.
Cette loi est la généralisation de la loi normale N'(u, o) ou m = (u) et X = (0).

4.4 Moments d’un vecteur aléatoire

On peut généraliser au cas d’un vecteur aléatoire la notion de moment introduite pour les
variables aléatoires.

DEFINITION 48 Soit X = (X1,...,X,) un vecteur aléatoire défini sur un espace pro-
babilisé (2, A, P). On appelle espérance du vecteur aléatoire X, le vecteur

E(X1,...,X,) = (B(X1),...,E(X,)) € R".

Autrement dit, l’espérance d’un vecteur aléatoire est le vecteur constitué des espérances
de chacune des v.a.r. coordonnées.

PROPOSITION 47 Soit X = (Xi,...,X,) un vecteur aléatoire discret défini sur un
espace probabilisé (2, A, P) a valeurs dans D = X () sous-ensemble fini ou dénombrable
de R™. Soit h : R* — R une fonction bornée et continue par morceaux. L’espérance de
la v.a.r. Z = h(Xy,...,X,) est donnée par

E(Z)= Y. Ak, k) P(X =k, Xy = k).
k=(k1,....kn)ED

DEMONSTRATION Ce résultat est admis. o]
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PROPOSITION 48 Soit X = (X1,...,X,) un vecteur aléatoire défini sur un espace
probabilisé (0, A,P) admettant pour densité lapplication fx de R* dans R. Soit h :
R* — R une fonction bornée et continue par morceauz. L’espérance de la v.a.r. Z =
h(X1,...,X,) est donnée par

lorsque cette intégrale existe.

DEMONSTRATION Ce résultat est admis. o]

PROPOSITION 49 Soient X, Y deux vecteurs aléatoires de R* et A € My(R) une
matrice carrée d’ordre n a coefficients réels. On a

1. BE(AX) = AEX);
2. E(X +Y)=EX)+EY).

DEMONSTRATION Laissée au lecteur. o]

La notion de variance d’une v.a.r. se généralise pour un vecteur aléatoire. On est amené
a définir une matrice de covariance.

DEFINITION 49 Soit X = (Xi,...,X,)T un vecteur aléatoire de R*. On appelle ma-
trice de covariance de X la matrice

Ix = (Cov(X;, X;))

i,j=1,.m

La notion de matrice de covariance d’un vecteur aléatoire est une généralisation naturelle
de la variance d’une v.a.r.. On a en effet

Ty = ]E((X CEX))(X — ]E(X))T).

REMARQUE Pour toute matrice A € M, (R) et pour tout vecteur B € R", le vecteur
aléatoire Y = AX + B a pour matrice de covariance
I'y = E[(AX + B — AE(X) — B)(AX — AE(X))7]
- ]E(A(X ~E(X))(X - E(X))TAT)
= A FX AT,

ot AT désigne la matrice transposée de A.
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4.5 Fonction caractéristique et fonction génératrice

On peut étendre au cas des vecteurs aléatoires la notion de fonction caractéristique.

DEFINITION 50 Soit X un vecteur aléatoire de R*. On appelle fonction caractéris-
tique de X la fonction ¢x définie pour tout 7 = (t1,...,t,) € R* par

PROPOSITION 50 Pour toute matrice A € M, (R) et pour tout vecteur B € R", le
vecteur aléatoire Y = AX + B a pour fonction caractéristique

oy (1) = e!mB) dx(TA).

DEMONSTRATION La preuve procéde d’un simple calcul,

buxinlr) = E(cxim)
= 0B | (e7(4X)
— ei(T.B) E (e(i(TA).X))
Bl gy (TA).

Attention & ne pas confondre 7.B, produit scalaire entre deux vecteurs, avec 7A, produit
matriciel : 7 € R*, BeR", 7. B Ret 74 € R".

DEFINITION 51 Soit X = (Xy,...,X,) un vecteur aléatoire discret de R*. On appelle
fonction génératrice de X la fonction Gx définie pour tout (s1,...,s,) € [0,1]" par

Gx(s1,--,80) =E (57" ...507).

4.6 Indépendance de n variables aléatoires

DEFINITION 52 Lesn v.a.r. Xq,...,X, sont dites mutuellement indépendantes si
V(z1,...,2,) € R, les événements [X; < x;],i = 1,...,n sont mutuellement indépen-
dants.
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PROPOSITION 51 1. Soient X4,..., X, n v.a.r. mutuellement indépendantes de fonc
tions caractéristiques ¢x,,» = 1,...,n. La fonction caractéristique de la v.a.r.

n
S = ZXi est donnée pour tout réel t par

i=1
¢S(t) = H ¢Xi (t)’
i=1
2. Soient Xq,..., X, n v.a.r. discrétes mutuellement indépendantes de fonctions gé-
n
nératrices Gx,,t =1,...,n. La fonction génératrice de la v.a.r. S = ZXz- est

i=1
donnée pour tout s € [0, 1] par

Gs(s) = H Gx,(s).

DEMONSTRATION Ce résultat se démontre par récurrence en utilisant les résultats des
propositions 43 et 44. 0

COROLLAIRE 7 La v.a.r. définie comme la somme de n v.a.r. mutuellement indépen-
dantes de méme loi de Bernoulli de paramétre p suit une loi binomiale de paramétre

(n,p).

PROPOSITION 52 Soient Xq,..., X, n v.a.r. mutuellement indépendantes.

1. Si pour k € {1,...,n}, Xy suit une loi normale de paramétres (uy,o:) alors la
v.a.r. définie comme la somme de ces n v.a.r. suit une loi normale de paramétres

(1, 0%) ot
MZZMk et 0'2220',%.
k=1 k=1
2. Silesn v.a.r. suivent une méme loi normale centrée réduite N'(0,1) alors la v.a.r.

T = ZX,? suit la loi du Chi-Carré a n degrés de liberté.
k=1
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fonction génératrice commune Gx. On considére la v.a.r. S définie par
N(w)
S:welr— S(w) = ZXi(w).
i=1

La v.a.r. S admet pour fonction génératrice

Vs€[0,1], Gs(s) = Gn (Gx(5)).

ProPoOSITION 53 (Identité de Wald') Soit (2, P(Q),P) un espace probabilisé dis-
cret. Soit N une v.a.r. discréete définie sur S a valeurs dans N* de fonction génératrice
Gy. Soient X1,..., Xy, des v.a.r. définies sur €2, indépendantes, toutes de méme loi, de

DEMONSTRATION Ce résultat est admis.

COROLLAIRE 8 [’espérance et la variance de la v.a.r. S sont donnés par
E(S) = E(X;) E(N),

et
Var(S) = E(N) Var(X;) + Var(N) E(X;)>.

DEMONSTRATION On a

E(S) = Gs(1)

i1
QA
27z
N—r C}
X
PIS
N—
-~ N
SN—
Q
b
=
o
>
=.
s
=
@]
=
-~
=
=
D
o
=
e}
=
@]
=
@)
=]
8
el
o
0
S
D

Puis,

Var(S)

Il
Q
n=3
—~~
—_
~—
+
Q
0=
—
—t
~—

I
—
Q

Or d’aprés I'identité de Wald,

G5(1) = GR(Gx, (1) Gk, (1)* + Gy (Gx, (1)) G, (1).

11 suffit d’appliquer le résultat précédent pour conclure aprés calculs et simplifications.

'WaLD, Abraham (1902, Kolozsvar (Hongrie) - 1950, Travancore (Inde)).
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Chapitre 5

Théorémes limites

Soit E un événement donné relatif & une expérience aléatoire ayant une probabilité P(E)
inconnue. On souhaite obtenir une estimation de la valeur de P(F). Par exemple, on
dispose d'un dé que I'on sait étre truqué mais on ignore de quelle maniére et on s’intéresse
a la probabilité d’obtenir un six avec ce dé.

Supposons que 1'on répéte I'expérience aléatoire de maniére indépendante un nombre N
de fois et que la probabilité P(E) reste constante au cours des différentes répétitions de
I’expérience. Pour s € N, 1 <17 < N, on désigne par X; la v.a.r. qui vaut 1 si I’événement F
survient lors du ¢° tirage et 0 sinon. Les v.a.r. X; suivent une méme loi de Bernoulli de
paramétre p = P(FE) et on a

E(X;)=P(X;=1)=P(E)=p Vie{l,...,N}.

On introduit la v.a.r. Xy = %(Xl + ...+ Xy) appelée moyenne empirique de ’événe-
ment E. La v.a.r. Xy suit une loi binomiale de paramétre (N, p/N) et on a E(Xy) = p.
Intuitivement, si ’on répéte un grand nombre de fois 'expérience, on s’attend a ce que Xy
donne une approximation de P(E). Dans le cas de notre dé truqué, si aprés 1000 lancers
on a observé 251 fois le six, 'intuition nous suggére que la probabilité d’obtenir un six
avec ce dé est proche de 1/4.

Il est alors légitime de se poser un certain nombre de questions. Quelle est la précision du
résultat si 'on approche P(E) par la valeur de Xy obtenue pour la série de répétitions
de I’épreuve effectuée ? Est-on certain que la valeur de X obtenue converge vers P(E)
lorsque N «tend vers l'infini» 7 En quel sens? etc ... Les théorémes limites précisent les
choses du point de vue mathématique et apportent des réponses a ces questions.

1 Convergences stochastiques

1.1 Convergence en loi
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CHAPITRE 5. THEOREMES LIMITES

DEFINITION 53 Soient X une v.a.r. de fonction de répartition Fx et (X,)nen une suite
de v.a.r. de fonctions de répartitions respectives (Fx, )nen- On dit que la suite (Xp)nen
converge en loi vers X si pour tout réel x tel que Fx est continue en z, on a

lim Fx,(z) = Fx(x).

n—+0oo
On note alors .
X, — X
n—-+o0o

REMARQUE Contrairement aux autres modes de convergence stochastique (convergence
en probabilité, convergence presque sire, voir paragraphes suivants), il n’est pas nécessaire
ici que les variables aléatoires soient définies sur un méme espace probabilisé.

PROPOSITION 54 La suite (X,)nen converge en loi vers X si et seulement si on a la
relation sutvante entre les fonctions caractéristiques ¢x et ¢x, des v.a.r. X et X,,

Vit € R, n1—1>I—iI-loo ¢Xn (t) = ¢X(t)

De maniére équivalente la suite (X,)nen converge en loi vers X si et seulement si pour
toute fonction h de R dans R, bornée et continue par morceaur,

lim E(h(X,)) = E(h(X)).

n—-+o0o

DEMONSTRATION Ce résultat est admis. o]

1.2 Convergence en probabilité

DEFINITION 54 Soient X une v.a.r. et (X,)nen une suite de v.a.r. définies sur un
méme espace probabilisé (2, A,P). On dit que la suite (X,)nen converge en probabilité
vers X st
Ve >0, lim P(|X,—X|>¢) =0.
n—+0oo

On note

P
X, — X.
n—-+00

PROPOSITION 55 Si la suite (X,)nen converge vers X en probabilité, alors la suite
(Xn)nen converge vers X en loi.
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DEMONSTRATION Ce résultat est admis. o]

REMARQUE La réciproque est fausse en général. Elle n’est vraie que si X, converge en
loi vers une constante réelle.

1.3 Convergence presque siire

DEFINITION 55 Soient X une v.a.r. et (X,)nen une suite de v.a.r. définies sur un
méme espace probabilisé (0, A, P). Soit A € A l’ensemble des éventualités w € Q) telles
que la suite numérique (X, (w))nen converge vers X (w).

On dit que la suite (Xp)nen converge presque strement vers X si P(A) = 1. On note

X, 22 X.
n—4+o0o

PROPOSITION 56 Sila suite (X,,)nen converge vers X presque stirement, alors la suite
(Xn)nen converge vers X en probabilité.

2 Loi faible des grands nombres

Le théoréme suivant appelé «loi faible des grands nombres» confirme, sous certaines hy-
pothéses, qu’intuitivement ou expérimentalement, on observe que lorsque 1’on répéte un
grand nombre de fois une expérience aléatoire, la fréquence d’apparition d’un événement
est «proche» de sa probabilité.

THEOREME 6 Soient Xq,..., X, n v.a.r. de méme loi et non corrélées. On suppose que
ces v.a.r. admettent une espérance m et une variance o2 finies.
1 & . ,
La v.a.r. X,, = — E X, converge en probabilité vers m, i.e.
s
—~ P
X, —m
n—+0oo

n
DEMONSTRATION On pose S, = ZXZ" Montrons que Ve > 0,

i=1

lim IP’(
n—+oo
Appliquons 'inégalité de Bienaymé-Tchebychev a la v.a.r. S, /n :

@_E<&)‘ >6)  Var (Su/n)

n n €2

Sn
——m‘>e> =0.
n

Ve > 0, ]P’(

S. BALAC & O. MAZET - Introduction aux Probabilités 77



CHAPITRE 5. THEOREMES LIMITES

Or
S 1 — mn
E(2%) = -S EX;) =" =

et
2 2

Sy 1 — no o
Var (Z) = EZ_ZIVCLT'(XZ) = F = ;,

car les v.a.r. sont non corrélées par hypothése. On en déduit que

2
0§P<&—m >e><0—2.

n ne
Or
2
) o
Ve >0, lim — =0,
n—+oc NE
d’ou
) S,
lim IP’( —"—m‘ >e> = 0.
n—+oo n
— _ Sn e
La v.a.r. X, = — converge donc en probabilité vers m. o]
n

3 La loi forte des grands nombres

THEOREME 7 Soient X1,...,X, n v.a.r. de méme loi et indépendantes. On suppose
que ces v.a.r. admettent une espérance m finie.

1 <&
Lav.a.r. X, = — E X; converge presque sirement vers m, i.e. 3Q C Q avec P(Q§) = 0
n
i=1
tel que Yw € €y, o
lim X, (w)=m.

n—-+0o00

DEMONSTRATION Ce résultat est admis. o]

Comparaison entre la loi forte des grands nombres et la loi faible des grands
nombres

Ces 2 résultats nous assurent la convergence de la suite de v.a.r. (X,)nen vers X mais il
n'y a pas convergence «au méme sens». (Voir par exemple les séries de fonctions o on
définit 4 types de convergence : simple, absolue, uniforme, normale.)
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SECTION 4. THEOREME DE LA LIMITE CENTRALE

4 Théoréme de la limite centrale

y _
On rappelle que si Y ~ N (a,b), alors @ N(0,1). D’autre part, si Xi,...,X, sont

Vb

n v.a.r. indépendantes de méme loi N'(m, 0?), alors S,, = ZX,- suit une loi N (nm, no?).

n

=1
Ce résultat peut se démontrer au moyen de la fonction caractéristique. On en déduit que
Sp—nm X, —m
ovn  o/vn

Le théoréme de la limite centrale indique que dans le cas ou les X,, ne suivent pas une loi
normale, le comportement de la somme «centrée réduite» 7, s’approche toutefois de plus
en plus de la loi N'(0,1) quand n tend vers Uinfini.

T, =

~ N(0,1).

THEOREME 8 Soient X1,..., X, n v.a.r. indépendantes de méme loi, de moyenne m
n
et de variance 0%. La v.a.r. S, = ZXi vérifie,
i=1
Sp,—nm ¢
= > Y,

0\/ﬁ n——+00
ouY ~ N(0,1).

DEMONSTRATION Intéressons-nous a la fonction caractéristique de la v.a.r. S,

$s.(1) = x, ()"
— E(eitXl)n

= (]E<1+ti1+ P2 X2 4ot )))n
_ (1 +itR(X,) + PER(XZ) + o(t2))" .

D’ou par changement de variables et & ¢ fixé, on a

., yaim it t2 1\"
o) =5 (14 B0n) - SoEG) +olh))

on prend le logarithme de chaque membre,

\/_m ( itm 2, o t2m? 1))
o 7

o\v/n 2n02(0 +m) + o’n +O(ﬁ

et on constate que le second membre tend vers —t> /2 quand n — +o0, d’ou

In [¢r, ()] = —it

lim ¢z, (1) =¢ "/

n—-+o0o

qui est la fonction caractéristique de la loi N'(0,1). Comme la fonction caractéristique
caractérise la loi d’une v.a.r., le résultat est démontré. 0
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REMARQUE Le théoréme de la limite centrale indique que la somme d’un grand nombre
de v.a.r. indépendantes de méme loi suit approximativement une loi normale. Il fournit un
moyen simple pour le calcul approché de probabilités d’événements faisant intervenir une
somme de v.a.r.. De plus il explique le fait empirique que bien des phénoménes naturels
admettent une «distribution normale». Dans le cas d’une somme de v.a. de Bernoulli, le
théoréme de la limite centrale a été démontré par de Moivre! en 1733.

PROPOSITION 57 1. Soient X4,...,X,, n v.a.r. indépendantes de loi de Bernoulli
n

de parameétre p. La v.a.r. S, = ZXi suit une loi binomiale B(n,p) et la suite
i=1

(Sn)nen converge en loi vers une loi normale de paramétres (np, np(1 — p)).

2. Soient Xq,...,X, n v.a.r. indépendantes de loi de Poisson de paramétre \. La
n

v.a.r. S, = E X, suit une loi de Poisson de parameétre n) et converge en loi vers
i=1
une loi normale de paramétres (nX,n\).

REMARQUE En pratique, on approche une loi binomiale B(n,p) par une loi normale
N (np,np(1 — p)) dés que np = 20 et np(1 — p) = 20. On approche une loi de Poisson de
paramétre A par une loi normale N (n\,n)\) dés que n\ =~ 20.

5 Application : estimation de la moyenne d’une variable
aléatoire

La distribution exacte d’une variable X dans une population est généralement inconnue
a4 moins que 'on ait une connaissance exhaustive de la population. Dans le cas d’une
population de grande taille, il est impossible en pratique d’observer tous les individus de
la population pour déterminer exactement la fonction densité de X. Ne connaissant pas
la fonction densité de X, on ne peut calculer les caractéristiques principales de la variable
X, en particulier son espérance et sa variance.

La seule information disponible sur une variable, en dehors des hypothéses théoriques,
est fournie par des observations sur un échantillon pris dans cette population. Si les ob-
servations de la variable X sont faites au hasard et de maniére indépendantes les unes
des autres, ’échantillon devrait étre assez représentatif de la population. Il est alors jus-
tifié de vouloir estimer les caractéristiques de la variable X dans la population par les
caractéristiques de la variable X dans I’échantillon.

5.1 Estimations ponctuelles de la moyenne et de la variance

Considérons une variable X dont la moyenne y et la variance o2 dans une population sont
inconnues. Pour estimer ces valeurs, on fait n observations indépendantes x1,...,z, dans

'pE MOIVRE, ABRAHAM (Vitry, 1667- Londres, 1754).

S. BALAC & O. MAZET - Introduction aux Probabilités 80



SECTION 5. APPLICATION : ESTIMATION DE LA MOYENNE D’'UNE
VARIABLE ALEATOIRE

les mémes conditions. La moyenne dans I’échantillon est

n
1
CC:—E Z;
n <
=1

et la variance dans ’échantillon est

1 — 1 — 1 — ?
j =1 =1

On utilise alors T et s% comme valeurs estimées de i et o> dans la population.

Pour n assez grand, une telle estimation est justifiée par la loi des grands nombres. Dési-

gnons par X, ..., X, les variables aléatoires correspondant respectivement a I’observation
sur le premier individu de I’échantillon, ..., sur le n® individu de I’échantillon (de sorte
que X;(w) = z1,...,X,(w) = x,). Les variables aléatoires X, ..., X, sont de méme loi

(celle de X), d’espérance commune p et de variance commune o2. Elles sont indépen-

dantes si I’échantillon est correctement fabriqué. D’aprés la loi des grands nombres, la
n

var. X, = — E X, converge presque stirement et en probabilité vers p.
n
i=1

En appliquant la loi des grands nombres & la variable X2, on établit que la v.a.r. X* =
n

l 2 N Tita 2 4
ZXZ' converge presque siirement et en probabilité vers p® et que par conséquent
n

i=1

X* — X,,” converge presque slirement et en probabilité vers o2.

5.2 Estimations par intervalle de confiance de la moyenne

En estimant la moyenne p dans une population par la moyenne T dans un échantillon,
on fait en général une erreur. La valeur estimée n’est qu’approximative. On a souvent
recours a des estimations par intervalle : il s’agit de déterminer un intervalle [Z — d, T + d]
autour de la valeur de la moyenne empirique T de sorte qu’on puisse affirmer, avec un
degré de confiance fixé, que la moyenne y de la variable X dans la population se trouve
dans l'intervalle [T — d, T + d]. Le parameétre d est appelé la marge d’erreur. La probabilité
v que p appartienne a Uintervalle [T — d, T + d| est appelée seuil de confiance.

On peut donc construire un intervalle de confiance pour p de 2 maniéres.

1. Choisir une marge d’erreur d puis déterminer le seuil de confiance 7.

2. Choisir un seuil de confiance 7 puis déterminer la marge d’erreur d correspondante.
La relation entre la marge d’erreur d et le seuil de confiance v est
P(IX — p| < d) =1.
On a
X —yp
o/v/n

=P(X-l<d) = P

: a/d¢ﬁ>

= F (‘a/ii/ﬁ : f/?/g : a/cf/ﬁ) |
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X—p
o/vn

converge en loi vers une variable aléatoire de loi normale centrée réduite. On a donc

d o v+1
— ) -1 t  d~— Fgl o=
a/\/ﬁ) ¢ n N<°=1>< 2 )

ol Fi(o,1) désigne la fonction de répartition de la loi normale centrée réduite.

D’apres le théoréme de la limite centrale, si n est grand, la variable aléatoire
Y= 2 Fyo,n <

2

Dans le cas ou la variance o“ est inconnue, on l’estime par la variance empirique dans

I’échantillon.
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Chapitre 6

Chaines de Markov discrétes

Trés souvent quand on étudie un phénoméne qui dépend du hasard, il y a lieu de prendre
en compte I’évolution de ce phénoméne au cours du temps. Le modéle probabiliste cor-
respondant est appelé processus stochastique.

Nous nous intéressons dans ce chapitre aux processus pour lesquels ’espace des temps
est un espace dénombrable (on parle alors de chaine de Markov). Enfin, nous nous
restreindrons aussi au cas ou 'espace d’états de ces processus est dénombrable (et méme
fini!), c’est-a-dire le cas des chaines de Markov discrétes.

1 Chaine de Markov homogéne
Dans ce chapitre E désigne un ensemble fini. Sans perte de généralité, nous supposerons

que E est ’ensemble {1,..., N}. On note £ I’ensemble des parties de E. On se place sur
un espace probabilisé (2, F, P).

DEFINITION 56 Une chaine de Markov sur (2, F,P) a valeurs dans (E,£) est une
suite de v.a.r. (Xg)ken définies sur (0, F,P) et a valeurs dans (E, &) vérifiant Vn € N,
v(60, <e-y Eny en-l—l) € En+2,

P(Xn+1 = €n_|_1 ‘ Xn = €py.-- aXO = 60) = P(Xn+1 = €n+1 ‘ Xn = 6n).

Cette relation s’appelle «propriété de Markovy. Elle traduit le fait que le futur du processus
ne dépend du passé qu’a travers le présent ou encore comme l'indique la proposition 58
que conditionnellement au présent, futur et passé sont indépendants.
Pour k& € N, Xj, correspond a I’état de la chaine de Markov & ’étape k (dans une unité
de temps donnée). L’ensemble E est ainsi nommé 'espace d’états.

PROPOSITION 58 Une suite (Xy)gen de v.a.r. sur (2, F,P) & valeurs dans (E,E) est
une chaine de Markov si et seulement siVn € N, V(eg,...,ent1) € E"2,

P(Xn+1 = €p+1; Xn—l = €n—-1,y--- ,XO = €y | Xn = en) = P(Xn+1 = €p+1 | Xn = €n)
X]P’(Xn,1 = €p_1y--- ,X() = €y | Xn = en).
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DEMONSTRATION On a
P( X1 = ent1, X =€n,..., Xo =€)
=P(Xpy1 =€np1 | Xn=¢€n,...,Xo=¢€) X P(X,, =€, ..., Xo =€)
=P(Xnt1 =€nt1 | Xn=€n) XP(X, =¢€,,...,Xo=¢) d’aprés la définition 56
=P(Xpt1=€np1 | Xn=¢€n) XP(Xp 1=¢€p1,...,Xo=¢€9 | Xp =€,) X P(X,, = ¢€,).
D’ou
]P(Xn—|—1 =e€nt1, Xn-1 = €p_1,...,X0 = € | X, = en)
_ P(Xpi1 = eni1, Xn =é€n,..., Xo =€g)
P(X, = er)
=P(Xpi1=€ni1 | Xn=6€n) XxP(Xp 1=¢€, 1,...,Xo =€ | Xp, = €p).

Pour (m,n) € N°, n > m, les probabilités conditionnelles P(X,, = e, | X,, = €,,) sont
appelées probabilités de transition ou probabilités de passage en n—m étapes. Elles
donnent la probabilité que le systéme passe de 1’état e,, a I’état e, pendant I'intervalle de
temps de m a n.

DEFINITION 57 On dit qu’une chaine X = (Xy)ren est une chaine de Markov
homogéne si les probabilités de transition en £ étapes sont les mémes indépendamment
de instant n de la premiére transition. Autrement dit si VYn € N,VE € N, ¢ < n,V(i, j) €
E2

PX,=j| Xne=1)=PXe=7| Xo=1).

REMARQUE Pour £ = 1, on obtient en particulier que Vn € N*, V(i, j) € E?

P(Xp =3 | Xpo1 =1) =P(X; =j | Xo =1).

DEFINITION 58 On appelle matrice de transition la matrice G = (Gij)ijen €
My (R) d’éléments

?

PROPOSITION 59 La matrice de transition G est une matrice stochastique, c’est-a-dire
une matrice dont les éléments vérifient les 2 propriétés suivantes :

1. Gij >0 V(’L,j) € E? N

2. Vie E, Z Gij = 1 (autrement dit la somme des éléments d’une ligne de la matrice
jeE
vaut 1).
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DEMONSTRATION Ces propriétés sont évidentes, puisque par définition les éléments G;
sont des probabilités et que

VieE, Y Gy=Y PXi=j|Xo=i)= Pq(Xi =)

jEE jEE jEE

oil on a noté Prx,—; la probabilité conditionnelle sachant 1'événement [X, = 7]. Puisque
les événements [X; = j],j € E sont disjoints, on a

> Gij = Pixe=i (U[X1 = j]) = Pixo=i () = 1.

jEE jEE

PROPOSITION 60 Soit X = (X)ken une chaine de Markov homogéne de matrice de
transition G. Pourn € N, on désigne par G™ la puissance n® de la matrice G, c’est-a-dire
G" =G X G X ... xG. La probabilité de transition en n étapes de l'état 1 a l'élat j est

-

n %z’s
donnée par,
PX,=j| Xo=1) =GV

K

ot G, désigne I'élément d’indices (i, j) de la matrice G™.

REMARQUE Par commodité, on a noté
G?j = (G”)ij

I'élément d’indices (i, j) de la matrice G™ produit de la matrice G par elle méme n fois.
Il ne faut pas confondre cette quantité avec (G;;)" le produit n fois avec lui méme de
I’élément G;; d’indices (i, j) de la matrice G, qui dans le cas général est différent.

DEMONSTRATION On utilise un raisonnement par récurrence. Pour n = 1 c’est la défini-
tion. Supposons que P(X,, = k | Xy = i) = G}, pour i,k € E. Calculons,

]P(Xn—i—l =7, Xo = Z)

P(Xpp = | Xo=i) =

1
= oy — N IPXTL :.aX :7Xn:k
P(X, = 0) kZEE (i1 =5, Xo =1 )

1
= o S P(Xup = | Xo=i, X, =k
]P)(XO:Z) e ( +1 .7| 0 )

xP(Xy = i, X,, = k).
Or puisque (Xj)ken est une chaine de Markov
]P(Xn+1 :j | XO == Z,Xn = k) == ]P(Xn+1 :j | Xn = k),

donc
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. : 1 . .
P(Xpn1 =7 | Xo=1) mzp(Xnﬂ =J | Xn=k) xP(Xo =4, X, = k)
0= " ker
= Y P(Xop=j| Xo=k) xP(X, =k | X =i)
kEE
= ZGZ@ G-
kEE

Cette derniére relation correspond a 1’élément d’indice (7, j) de la matrice définie comme
le produit G™ x G, voir un cours d’algebre linéaire de premier cycle. On a donc

EXEMPLE On considére 2 urnes et 4 boules réparties dans les 2 urnes. L’expérience
aléatoire consiste a déplacer une boule d’une des urnes, la boule étant choisie au hasard
uniformément parmi les 4, dans ’autre urne. Une chaine est définie par la famille de v.a.r.
Xy :Q — Eou E =1{0,1,2,3,4} et Xi(w) est le nombre de boules dans la premiére
urne a l'étape k.

Gj est la probabilité d’avoir (j—1) boules dans la premiére urne sachant qu’avant 1’échange
des boules il y en avait (i — 1). On a G;; = 0 car la probabilité d’avoir 0 boule dans
I'urne sachant qu’il n’y en avait aucune auparavant est nulle. Lors de I’échange, la boule
a forcément été prise dans la seconde urne (qui seule contenait des boules) pour étre
mise dans la premiére (qui contient alors nécessairement exactement une boule). Par suite
G2 =1,G13=G14 =G5 =0.

De méme G9; = i. C’est la probabilité d’avoir 0 boule dans la premiére urne sachant qu’il
y en avait une auparavant, c’est-a-dire la probabilité de choisir la boule de la premiére
urne parmi les 4 boules qu’il y a en tout.

On vérifie que 'on a pour matrice de transition

)

|
O O OrRI= O
O O O =
Ol Orlw O
= o= O O
OnroO O O

EXEMPLE Pierre et Jacques jouent avec un dé a 6 faces. Pierre dispose de a euros au
départ et Jacques de b euros. A chaque lancer Pierre donne un euro a Jacques sauf si le dé
tombe sur la face six. Si un six est obtenu, Jacques donne 5 euros a Pierre (ou la totalité
de sa fortune lorsque celle-ci est strictement inférieure a 5 euros). Le jeu s’arréte lorsque
la mise initiale est épuisée. On s’intéresse a 1’évolution de la fortune de Pierre au cours
du jeu : on note X la somme dont dispose Pierre aprés le k¢ lancer.

La suite (Xj)ken définit une chaine de Markov dont 1’espace des états est E = {0,...,a+
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b}. Soit Yy la v.a.r. représentant le gain théorique de Pierre au cours du £° lancer (c’est-a-
dire que le gain réel peut étre moindre si Jacques est presque ruiné!). On a P(Y, = —1) =
5/6 et P(Yy =5) = 1/6. Ainsi,

P(Xny1=1—1|Xp=14) = P(Yni1 =-1)=5/6,

P(X,t1=i+5|X,=1i) = P(Y,;1=5)=1/6pouri<a+b-25,

P(Xpt1=a+b| X,=1i) = P41 =5)=1/6pouri>a+b—>5,
P(X,+1=0]|X,=0) = PX,y;1=a+b|X,=a+b) =1,

les autres probabilités de transition étant nulles.
Si 'on prend a = b = 5, on obtient la matrice de transition suivante,

1 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 1/6 0 0 0 0
0 56 0 0 0 0 0 1/6 0 0 0
0 0 56 0 0 0 0 0 1/6 0 0
0o 0 0 56 0 0 0 0 0 1/6 0
G=| 0o 0o o0 0 56 0 0 0 0 0 1/6
0o 0 0 0 0 56 0 0 0 0 1/6
0o 0 0 0 O 0 56 0 0 0 1/6
0o 0 0 0 0O O 0 56 0 0 1/6
0o 0 0 0 0O O O 0 56 0 1/6
\o o 0o 0o 0 0 0 0 0 0 1)

2 Caractérisation d’une chaine de Markov

Nous allons montrer qu’une chaine de Markov homogéne est caractérisée par la donnée
d’une loi initiale (correspondant a la loi de la v.a.r. Xj) et d’une matrice stochastique G.

PROPOSITION 61 (équation de Chapman'-Kolmogorov)
Soit X = (Xg)ren une chaine de Markov homogéne d’espace d’états E. Vi, j € E,Nn,m €
N, on a,

PXmin =3 | Xo=1) =) P(Xp =3 | Xo=k) x P(X, =k | Xo =1).

keE

DEMONSTRATION On a

) ] P(Xpim =7, X0 =1
P(Xpim = j | Xo=i) = Dihnim=4Xo=1)

P(X, = i)
1
= S P(Xupm = Xo = i, X = k
IP:(XO — 7,) P ( + J 0 )

LCHAPMAN, Sydney (1888, Eccles (GB) - 1970, Boulder (USA)). .
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1
= Y P(Xupm=j | Xo=i, Xy =k
IP(XOZZ)keE( + .7| 0 )
xP(Xo = i, X, = k)
1
= Y P(Xpim = | Xu= k) x P(Xo =, X, =
]P(X():Z) ( n+m .7| n ]{,‘)X ( 0 1, Ay k)

keE

= Y P(Xp =3 | Xo=k) xP(X, =k | Xo=1).

kEE

La derniére égalité est obtenue en utilisant le fait que (Xj)xen est une chaine de Markov
homogéne et donc que

PXpim=J|Xo=4,X,=k)=PXpym =7 | Xn=k)=P(X,, =7 | Xo =k).

KOLMOGOROV, Andrei Nicolaiévitch (1903, Tambov (Russie) - 1987, Moscou).

Professeur & l'université de Moscou, il est principalement connu pour
avoir fondé une théorie axiomatique des probabilités (1933) a partir
d’axiomes simples définissant une probabilité et faisant usage du concept
de tribu (définies par Borel) et des théories récentes de la mesure et du
calcul intégral au sens de Lebesgue. Ses travaux portérent également sur
I’analyse de Fourier et les systémes dynamiques. Pour tout savoir sur

Kolmogorov : http ://www.kolmogorov.com/ .

A ce stade, seules des probabilités conditionnelles ont été considérées. Ce sont les probabi-
lités de transition d’un état vers un autre état dans I’espace d’états E en une ou plusieurs
étapes. Si l'on désire connaitre la loi de la variable X, pour un entier n donné, il est
nécessaire de préciser la loi de la variable X,. Cette variable est appelée condition initiale
de la chaine.

On désigne par II la fonction de masse de la v.a.r. discréte X,

m:E — [0,1]
ko— m=P(Xy=k)

On définit le vecteur ligne m = (7, ..., 7n).

PROPOSITION 62 Soit X = (X,)nen une chaine de Markov homogéne de matrice de
transition G. Pour tout entier n, la fonction de masse de la v.a.r. discréte X, est l’ap-
plication TI™ définie par

nm™ . g — [0,1]

k +— W,(c")

ot W,(C") est la k¢ composante du vecteur ligne ™ obtenu en effectuant le produit du

vecteur ligne m par la matrice G™. Autrement dit 7™ =7 G, et 70 = 7.
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DEMONSTRATION Pour 7 € F, en utilisant la formule de Bayes, on a en effet,

P(X,=i) = Y P(X,=i|Xo=k)P(X,=k)

- ZGZ‘Z Tk

keE

Cette derniére égalité représente le produit du vecteur ligne 7 par la matrice G", voir
[Balac-Sturm]. 0

Montrons maintenant que la donnée d’une matrice de transition G' et de la loi © de
la condition initiale X, permet de caractériser une chaine de Markov homogéne X =
(Xn)nen, c’est-a-dire de déterminer la loi des vecteurs (X, ..., X,) pour tout entier n.

PROPOSITION 63 Soit X = (X,)nen une chaine de Markov homogéne sur un espace
d’états E, de matrice de transition G et de condition initiale Xo ayant pour fonction de
masse ’application 11 de E dans [0, 1].

Pour tout entier n et pour tout (n+1)-uplet (eq,...,e,) € E"™, on a

P(Xo=¢€0,..., Xn="¢€n) =Tey Gegres Geryes--- Gep_1.en-

DEMONSTRATION Le résultat se démontre par récurrence sur n. Pour n = 0, ’égalité
correspond & la définition de la fonction de masse II. Supposons donc la relation vraie
pour un entier £ donné. On peut alors écrire,

P(Xo=¢€0,---, Xpr1 =¢€rs1) = P(Xpp1=e€rs1 | Xo=c¢€g,...,Xr =€)
x P(Xo = ¢o, ..., X = ex)
= P(Xyji1 =eps1 | Xk =€) P(Xo =e9,-.., X =€)
= G P(Xo =eq,-.., Xk =€)
= G G

€kyCk+1

: G60,61 Teg-

€ks€E41 €r—1,€ * °

3 Classification des états d’une chaine de Markov

Dans la définition que nous avons donnée d’une chaine de Markov, 1’évolution du proces-
sus au cours du temps a partir d’un état donné est entiérement décrite par la matrice des
probabilités de transition. On peut aussi voir une chaine de Markov comme un ensemble
d’états entre lesquels s’effectuent des transitions. Certaines transitions sont possibles (pro-
babilité de transition strictement positive) alors que d’autres sont impossibles (probabilité
de transition nulle). Ceci nous améne a vouloir visualiser une chaine de Markov en repré-
sentant chaque état par un sommet et chaque transition par un arc. Ce schéma est appelé
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diagramme sagittal. Dans le cas de 1’exemple précédent du lancer de dé, le diagramme
sagittal associé a la chaine est le suivant,

5/6

La probabilité que le systéme soit dans I’état 7 au temps ¢t et dans I'état j au temps t+n :
G?sz(XHn:j | Xy =1)=P(X,=j | Xo=1).

On dit que I’état j est accessible & partir de I’état 7 et on note ¢ — 7, si la probabilité
de passer de 7 & j est non nulle :

dn € N, G} > 0.

Ceci signifie qu’il existe un chemin entre 7 et j. On dit que les états 7 et j communiquent
et on note 7 +— j, si chacun d’eux est accessible & partir de 'autre : : — j et 7 —> 1.
La relation de communication entre deux états est réflexive, symétrique (par définition)
et transitive, c’est donc une relation d’équivalence. Il est ainsi possible de construire une
partition des états d’une chaine de Markov en classes d’équivalence telle que tous les
états d’une classe communiquent entre eux et que deux états appartenant & deux classes
différentes ne communiquent pas. une classe est dite transitoire s’il est possible d’en sortir
mais dans ce cas, le processus ne pourra plus jamais y revenir. Une classe est dite récurrente
s’il est impossible de la quitter. Si une classe récurrente est composée d’un seul état, cet
état est dit absorbant. Un état 7 absorbant est donc tel qu’une fois dans cet état on ne
peut le quitter.

En terme de probabilités de transition, ceci signifie que V& # i, Gy = 0 et donc G; = 1.
Les états absorbants sont trés particuliers puisqu’ils constituent des états terminaux du
systéme. Il est intéressant d’étudier les probabilités d’absorption, c’est-a-dire les proba-
bilités que le systéme finisse par atteindre un tel état. Les états d’une classe transitoire
sont appelés états transitoires alors que les états d’une classe récurrente sont appelés états
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récurrents. Un état absorbant est donc un type particulier d’état récurrent. Une chaine
de Markov pour laquelle il n’existe qu’'une seule classe (forcément récurrente) est dite
irréductible. Ceci signifie que tous les états communiquent,

V(i,j) € B?, 3n e N*, G}, > 0.
Une chaine de Markov est apériodique si
Vi€ E, PGDC({n €N, G > o}) =1.

Lorsque la chaine est irréductible et apériodique on dit que la chaine est ergodique.

4 Comportement asymptotique d’une chaine de Markov

Aprés ’étude du comportement d’une chaine de Markov homogéne en n transitions, nous
désirons étudier le comportement asymptotique de celle-ci lorsque 1’entier n tend vers +oo.
Considérons une chaine de Markov homogéne X = (X,,),en sur un espace d’états F, de
matrice de transition G et de condition initiale Xy ayant pour fonction de masse II. Nous
avons établi & la proposition 62 que la loi de la v.a.r. discréte X,, s’obtenait & partir du
vecteur 7 et de la matrice G' par la relation de récurrence,

DEFINITION 59 On appelle loi de probabilité invariante de la chaine de Markov
homogéne X = (X, )nen une fonction de masse = : k € E —— & € [0,1] ou le vecteur
&= (&,...,&N) est solution du systéme linéaire

§=¢G.

Une telle loi existe toujours. La matrice de transition qui est une matrice stochastique
admet la valeur propre 1 et le vecteur dont toutes les composantes sont égales a 1 est le
vecteur propre a droite associé a cette valeur propre. Le vecteur £ associé a une loi de
probabilité invariante = est donc vecteur propre a gauche associé a la valeur propre 1.
L’équation & = £ G se formule de maniére équivalente en disant que £7 est vecteur propre
de GT associé a la valeur propre 1. Lorsqu’une loi de probabilité invariante = est choisie
comme loi pour la variable X, , on obtient alors

€=cG=¢ =W G=£G=¢
puis par récurrence, pour tout entier n,
W =) g=¢qG==¢.
Ceci signifie que la loi de la v.a.r. X,, pour tout entier n est la fonction de masse =.

Nous cherchons désormais des conditions portant sur la matrice de transition G sous
lesquelles la loi invariante = est unique. Autrement dit, on cherche & quelles conditions
I’équation £ = £ G admet une unique solution.
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THEOREME 9 Soit X = (X,,)nen une chaine de Markov homogéne, irréductible et apé-
riodique, sur un espace d’états E, de matrice de transition G.

1. 1l existe une unique lot de probabilité = invariante. De plus, Vi € E, & > 0.
2. Pour tout (i,7) € E?, on a

n—-+o0o

3. Quelle que soit la loi de Xy, la suite de v.a.r. (X,)nen converge en loi vers la loi
de probabilité invariante =.

REMARQUE D’aprés le théoréme 9, on a

Hm P(Xpgn =J | Xp =14) =&

n—-+o0o

Cette limite est donc indépendante de 7. Ceci nous améne a faire ’approximation suivante

lorsque n est grand
IED(Xm+n =] ‘ Xn = Z) ~ IF)(AerH-n = .7)

En d’autres termes, nous pouvons considérer que deux états de la chaine séparés par une
longue histoire sont indépendants. On peut démontrer que la limite est atteinte a une
vitesse exponentielle et cette vitesse de convergence se caractérise par le coefficient

p= max{|)\|, A€ Sp(G) et A # 1}.
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Annexes

Lois discrétes classiques

Densité

Nom de la loi Ensemble £ P(X = k), k € E. Espérance Variance
des valeurs
Loi uniforme Uy | {1,...,N} 1/N (N+1)/2 (N2 —-1)/12
N e N
Loi de Bernoulli {0,1} gE§ i (1); i ]1) _p P p(1—p)
B(p) p €]0, 1]
Loi binomiale Ckpk(1 — p)nF np np(1l — p)
B(n,p) n € N|[{0,1,...,n}
p €0, 1]
Loi  géométrique N* p(1 —p)F1 1/p (1-p)/p°
G(p) p €]0,1]
)\k

Loi de Poisson N e_)‘ﬁ A A
P(A) A>0 '
Loi binomiale néga- N Ct, w'(1=p¥ |r(1—p)/p r(1—-p)/p°
tive J(r,p) n € N*
p €]0,1]

ck ok N —
Loi  hypergéomé- | {0,...,n} Npcj;l(l_p) np np(1l — p) N 7;
trique  H(N,n,p) N B
N,neN pelo, 1]
Loi de Pascal | k€ Navec| Ci_|p"(1—p)*T r/p r(1—p)/p°
P(r,p) k=>r




Lois continues classiques

Densité
Nom de la loi Ensemble E fz)sizeF Espérance | Variance
des valeurs Osiz¢ E
1 b b—a)?

Loi  Uniforme [a, b] ; a—2i— ( 12@)
U(la,b]) a < b —a

. . 1 1
Loi exponentielle R* Ae M 3 32
EANA>0

. 1 (z —m)? 2
Loi normale R exp(— m o

oV 2w p( 202

N (m,o?)




Table de la fonction de répartition de la loi normale

Si X est une variable aléatoire suivant une Q40

loi normale centrée réduite N (0, 1), la table

donne la valeur de la fonction de répartition 0,24

de X enz, F(z) =P(X < z).

La valeur de z s’obtient par addition des

nombres inscrits en marge.

Pour £ < 0, 0n a F(x) =1— F(|z]). it} 5
x .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
.0 || .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319 | .5359
1 || 5398 | .5438 | .5478 | 5517 | .57 | .5596 | .5636 | .5675 | .5714 | 5753
2 || 5793 | 5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103 | .6141
3 || 6179 | 6217 | .6255 | .6293 | .6331 | .6368 | .6406 | .6443 | .6480 | .6517
4 || .6554 | .6591 | .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879
5|l 6915 | 16950 | .6985 | .7019 | .7054 | .7088 | .7123 | .7157 | .7190 | .7224
6 || 7257 | 7291 | 7324 | 7357 | .7389 | .7422 | .7454 | .7486 | .7517 | .7549
7| 7580 | L7611 | 7642 | 7673 | .7703 | .7734 | 7764 | 7793 | .7823 | .7852
8 || 7881 | L7910 | .7939 | .7967 | .7995 | .8023 | .8051 | .8078 | .8106 | .8133
.9 || .8159 | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | .8365 | .8389
1.0 || .8413 | .8438 | .8461 | .8485 | .8508 | .8531 | .8554 | .8577 | .8599 | .8621
1.1 || .8643 | .8665 | .8686 | .8708 | .8729 | .8749 | .8770 | .8790 | .8810 | .8830
1.2 || .8849 | .8869 | .8888 | .8907 | .8925 | .8944 | .8962 | .8980 | .8997 | .9015
1.3 || .9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .9177
1.4 || .9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | .9292 | .9306 | .9319
1.5 || .9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | .9418 | .9429 | .9441
1.6 || .9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535 | .9545
1.7 || .9554 | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .9633
1.8 || .9641 | .9649 | .9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699 | .9706
1.9 || .9713 | .9719 | .9726 | .9732 | .9738 | .9744 | .9750 | .9756 | .9761 | .9767
2.0 || 9772 | 9778 | .9783 | .9788 | .9793 | .9798 | .9803 | .9808 | .9812 | .9817
2.1 || .9821 | .9826 | .9830 | .9834 | .9838 | .9842 | .9846 | .9850 | .9854 | .9857
2.2 || .9861 | .9864 | .9868 | .9871 | .9875 | .9878 | .9881 | .9884 | .9887 | .9890
2.3 | .9893 | .9896 | .9898 | .9901 | .9904 | .9906 | .9909 | .9911 | .9913 | .9916
2.4 || .9918 | .9920 | .9922 | .9925 | .9927 | .9929 | .9931 | .9932 | .9934 | .9936
2.5 { .9938 | .9940 | .9941 | .9943 | .9945 | .9946 | .9948 | .9949 | .9951 | .9952
2.6 || 19953 | 19955 | .9956 | .9957 | .9959 | .9960 | .9961 | .9962 | .9963 | .9964
2.7 || 19965 | 9966 | .9967 | .9968 | .9969 | .9970 | .9971 | .9972 | .9973 | .9974
2.8 || .9974 | 9975 | 9976 | .9977 | .9977 | .9978 | .9979 | .9979 | .9980 | .9981
2.9 || L9981 | .9982 | .9982 | .9983 | .9984 | .9984 | .9985 | .9985 | .9986 | .9986
3.0 || L9987 | .9987 | .9987 | .9988 | .9988 | .9989 | .9989 | .9989 | .9990 | .9990
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Poincaré (formule), 18
Poisson

notice biographique, 34
probabilité

conditionnelle, 21
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