

Restitution 4D du château de la

Wasenbourg dans le cadre du projet

INTERREG VI

Master Imagerie, Robotique et Ingénierie pour le vivant (IRIV)

Parcours Topo

Mémoire de stage de master 2

Rapport de Projet de Fin d’Études (PFE)

Daéren RIGAUD

Parcours 2023

Année universitaire 2022-2023

Encadrant/Directeur de PFE : Koehl Mathieu

(mathieu.koehl@insa-strasbourg.fr)

Correcteur de PFE : Moisan Emmanuel

(emmanuel.moisan@insa-strasbourg.fr)

Laboratoire ICube

24 Boulevard de la Victoire,

67000 Strasbourg

Résumé du projet (en français)

Restitution 4D du château de Wasenbourg dans le cadre du projet INTERREG VI

Dans un objectif de revalorisation des châteaux rhénans (français et allemands) encadré par le

projet INTERREG VI, nous avons effectué la restitution 4D du château de Wasenbourg, situé

dans le Bas-Rhin. Nous avons exploité des données lasergrammétriques et photogrammétriques

acquises par nos soins sur le terrain pour obtenir un nuage de points dense, qui sera utilisé pour

effectuer un maillage du modèle 3D de l’état actuel (en ruines). Nous avons complété ce nuage

de points avec des données Lidar HD issues de l’IGN pour construire le MNT afin d’avoir une

représentation du sol autour du château. En explorant les différentes sources historiques non

métriques (croquis, essais de restitution, discussions avec un archéologue, descriptions de

l’histoire du château), nous avons restitué le château à l’état historique de sa construction (XIIIe

siècle), à partir de primitives géométriques en utilisant le logiciel Blender. Afin d’apporter une

transparence dans la restitution, nous avons défini des niveaux de certitude pour chaque objet

3D, représentés par une échelle de couleurs formant la première représentation de l’état

historique. La seconde exploite la méthode de cartographie UV pour appliquer au modèle des

textures réalistes. Enfin, le modèle 4D a été exporté et travaillé sur le logiciel Unity pour

proposer une visite virtuelle immersive, interactive et collaborative dans le Cube VR, nouvelle

technologie remplaçant les casques VR traditionnels.

Résumé du projet (en anglais)

4D rendering of Wasenbourg castle as part of INTERREG VI project

As part of the INTERREG VI project to upgrade French and German castles on the Rhine, we

carried out a 4D restitution of Wasenbourg castle in the Bas-Rhin region of France. We used

lasergrammetric and photogrammetric data acquired in the field to obtain a dense point cloud,

which will be used to mesh the 3D model of the current (ruined) state. We supplemented this

point cloud with HD Lidar data from IGN to build the DTM, in order to obtain a representation

of the ground around the castle. By exploring the non-metric historical sources (sketches,

restitution tests, discussions with an archaeologist, descriptions of the castle's history), we

restored the castle to the historical state of its construction (13th century), from geometric

primitives using Blender software. To bring transparency to the restitution, we defined levels

of certainty for each 3D object, represented by a color scale forming the first representation of

the historical state. The second uses UV mapping to apply realistic textures to the model.

Finally, the 4D model was exported and worked on using Unity software to offer an immersive,

interactive and collaborative virtual tour in the Cube VR, a new technology replacing traditional

VR headsets.

Remerciements
Je tenais à remercier mon encadrant et correcteur de PFE Mathieu Koehl pour m’avoir accueilli

dans le laboratoire de recherche et m’avoir fait confiance pour réaliser ce projet. Je remercie

également mon autre correcteur de PFE Emmanuel Moisan, qui m’a beaucoup aidé pour mener

à bien ce projet et qui a répondu à mes questions, notamment concernant le fonctionnement de

certains logiciels (CloudCompare ou Blender par exemple). Je tenais également à remercier

mes confrères et consœurs du laboratoire ICube, en particulier à Jade-Emmanuelle Heitz qui

participe au projet INTERREG VI avec moi, pour m’avoir apporté des idées et des solutions

sur lesquelles j’ai pu me baser pour répondre à des problèmes que j’ai eus au cours de ce projet,

le tout dans une ambiance agréable et chaleureuse. Je tenais également à remercier Jacky Koch,

archéologue de l’entreprise Archéologie Alsace, pour le temps consacré à nous partager ses

connaissances sur les châteaux forts alsaciens ainsi que pour les corrections du modèle au cours

du projet. Je remercie également Solène Meignen, ingénieure pédagogique, ainsi que Philippe

Seitier, enseignant à l’INSA Toulouse, et Bastien Sommeria Klein, technicien de la DSIN à

l’INSA Strasbourg, pour les explications concernant l’utilisation du Cube VR.

Je remercie également ma consœur Zoé Papirer pour son soutien incommensurable au cours du

projet et pour ses précieux conseils pour la rédaction de ce rapport. Enfin, je remercie ma famille

pour m’avoir permis de suivre la voie de la topographie à l’INSA Strasbourg.

Table des matières
Résumé du projet (en français) ..

Résumé du projet (en anglais) ..

Remerciements...

Introduction : définition des objectifs et contexte historique du château .. 1

1/ Etat de l’art sur la restitution 4D appliquée au château de Wasenbourg 3

1.1/ Méthodes de restitution 4D et de représentation du modèle Erreur ! Signet non défini.

a) Présentation de Projets de Fin d'Etudes (PFE) des années antérieures et conception

d'une première chaîne de traitement ... Erreur ! Signet non défini.

b) Démarches de modélisation 3D .. Erreur ! Signet non défini.

c) Méthodes de texturage du modèle et pistes d’optimisation du rendu Erreur ! Signet

non défini.

1.2/ Représentation de l'incertitude dans la restitution 4D Erreur ! Signet non défini.

1.3/ Communication et mise en valeur du modèle ... 3

a) La vidéo de visite virtuelle .. 4

b) Les méthodes plus interactives : représentations VR, AR et applications mobiles 5

2/ Acquisitions terrain et traitement des données pour obtenir un nuage de points dense .. Erreur !

Signet non défini.

2.1/ Acquisitions terrain ... Erreur ! Signet non défini.

2.2/ Traitement des données lasergrammétriques sur Covadis et Faro Scene Erreur ! Signet non

défini.

a) Traitement des acquisitions tachéométriques et GNSS sur Covadis Erreur ! Signet non

défini.

b) Traitement des acquisitions au scanner laser sur FARO Scene . Erreur ! Signet non défini.

2.3/ Traitement des données photogrammétriques sur Metashape Erreur ! Signet non défini.

3/ Modélisation 3D de l’état existant .. Erreur ! Signet non défini.

3.1/ Etude comparative de logiciels pour la segmentation des points au sol et de la création du

MNT .. Erreur ! Signet non défini.

a) Segmentation des points du sol .. Erreur ! Signet non défini.

b) Création du MNT ... Erreur ! Signet non défini.

3.2/ La modélisation 3D par maillage sur Metashape Erreur ! Signet non défini.

a) Application et comparaison avec d’autres méthodes Erreur ! Signet non défini.

b) Texturage et réduction du nombre de triangles par la méthode de la Normal map Erreur !

Signet non défini.

4/ Modélisation 4D sur Blender .. Erreur ! Signet non défini.

4.1/ Prise en main du logiciel ... Erreur ! Signet non défini.

a) Présentation du logiciel Blender et de l’interface......................... Erreur ! Signet non défini.

b) Description des outils principaux utilisés pour ce projet Erreur ! Signet non défini.

4.2/ Tâches effectuées sur Blender .. Erreur ! Signet non défini.

5/ Mise en valeur du modèle : représentation dans le Cube VR ... 6

5.1/ Présentation du matériel utilisé ... 6

a) Le Cube VR ... 6

b) Le logiciel Unity avec le SDK DEC .. 8

5.2/ Premières approches de Unity et import du modèle .. 8

a) Description de l’interface, des GameObjects et des Components ... 8

b) Import du modèle 4D .. 10

5.3/ Exploitation d’un menu intéractif et description du mouvement dans le monde virtuel . 13

a) Description du XRPlayer et de la représentation dans le Cube .. 13

b) Navigation dans le monde virtuel .. 15

c) Exploitation des scripts Floor et Wall sur les modèles 3D ... 16

d) Utilisation du Canvas UserVRInventory pour l’affichage des différentes représentations

du château .. 18

5.4/ Implémentation d’outils pour l’amélioration de l’expérience VR 21

a) Création de boîtes de dialogue interactives .. 21

b) Ajout de sons audios dans la scène .. 22

c) Perspectives d’outils à implémenter dans le projet .. 23

Conclusion .. 24

Liste des tableaux .. 25

Table des illustrations ... 25

Bibliographie .. 27

Annexes : travaux supplémentaires ... Erreur ! Signet non défini.

A.1/ Intégration des textures réalistes dans la phase historique sur Blender . Erreur ! Signet non

défini.

A.2/ Intégration des données LIDAR HD dans le modèle Erreur ! Signet non défini.

1.3/ Communication et mise en valeur du modèle

1

Introduction : définition des objectifs et

contexte historique du château

La modélisation 3D est une notion très répandue dans le milieu de la topographie et du génie

civil de nos jours. De nombreux logiciels permettent de traiter des données 3D terrestres de

différentes manières, avec des outils polyvalents selon la situation.

Une de ses applications que nous allons étudier dans ce Projet de Fin d’Etudes est la restitution

de monuments, partiellement ou complètement en état de ruines. En effet, reconstruire et

représenter virtuellement des éléments toujours présents aujourd’hui ainsi que des éléments

disparus suscite un engouement dans le milieu archéologique, touristique et aussi scientifique.

Nous parlons alors de modélisation 4D lorsque nous mettons en valeur plusieurs phases

historiques d’une même construction.

L’objectif de ce projet est donc d’effectuer une restitution 4D du château de Wasenbourg,

surplombant le village de Niederbronn-les-Bains dans le Bas-Rhin. Plus exactement, dans la

mesure où nous sommes 2 étudiants à initier le projet de revalorisation des châteaux rhénans

dont la durée est fixée à 3 ans, nous cherchons à définir plusieurs méthodes pour optimiser et

instruire la restitution d’un château en ruines sous plusieurs phases historiques (au travers de

guides, vidéos tutoriels, etc.) avec application concrète sur le château de Wasenbourg, pour

permettre à d’autres acteurs (entre autres des étudiants en PFE pour les années suivantes) de

découvrir ce type de projet dans de bonnes conditions à l’avenir. De plus, nous avons effectué

des recherches pour mettre en valeur le modèle final au travers d’une visite interactive en réalité

virtuelle (VR) dans le Cube VR, technologie récente développée par Virtual Concept proposant

une expérience différente par rapport à d’autres méthodes conventionnelles comme le casque

VR. Nous cherchons alors à répondre à plusieurs problématiques, à la fois pour le laboratoire

ICUBE-TRIO et pour l’avancement du projet INTERREG VI – Châteaux Rhénans:

- Comment modéliser le château de Wasenbourg et le restituer à plusieurs étapes

historiques ?

- Comment instruire les méthodes utilisées à des personnes néophytes dans le domaine

de la modélisation 3D ?

- Comment mettre en valeur le livrable à travers le Cube VR ?

Après avoir défini un état de l’art présentant plusieurs sources bibliographiques dans la

thématique de la modélisation et de la restitution archéologique, une description de la chaîne

de traitement appliquée dans ce projet sera effectuée, en commençant par les acquisitions terrain

et le traitement des données, puis la modélisation 3D de l’état existant. L’aspect 4D avec la

modélisation de l’état historique sera ensuite développé, en concluant sur la mise en valeur du

modèle dans le Cube VR.

Contexte historique du château de Wasenbourg

Dans la mesure où aujourd'hui le château de Wasenbourg est en ruines, nous souhaitons

effectuer une modélisation 4D en restituant les éléments d'origine. C'est pour cela que

comprendre le contexte historique de ce château est capital pour créer le plus fidèlement

possible les différentes parties du château. Entre autres, nous recherchons en particulier des

1.3/ Communication et mise en valeur du modèle

2

éléments d'archives tels que des plans 2D, des croquis ou du moins des cotations pour éviter de

modéliser uniquement à partir d'hypothèses, et de définir les différentes époques dans lesquelles

le château sera modélisé.

Salesse (2018) propose une monographie qui retrace, entre autres, une chronologie historique

du château de Wasenbourg, à partir des nombreuses références dédiées à ce sujet. Toutefois,

comme l'auteur le décrit, beaucoup d'évènements historiques ne sont pas garantis et restent

hypothétiques, par manque d'informations précises. Mais elles restent tout de même les théories

les plus plausibles, s'appuyant généralement sur des trouvailles faites autour du site (roches en

ruines appartenant à un ancien édifice démoli, objet datant d'une ère ancienne, etc.), par hasard

ou à travers des fouilles organisées par un archéologue.

Selon les différentes théories recensées par Salesse (2018), nous pouvons distinguer 4 époques

concernant le château de Wasenbourg :

L'époque préromaine (avant le Ier siècle après J.C) : des objets archéologiques datant du

néolithique jusqu'aux celtes (haches de bronze, pointes de flèches, grattoirs en silex, etc.) ont

été retrouvés dans la région, et notamment autour de Niederbronn-les-Bains, ce qui attesterait

d'une présence humaine avant l'occupation romaine d’après l’Encyclopédie de l’Alsace (1986).

De plus nous pouvons encore aujourd’hui retrouver les fondations des murs d’une enceinte à

environ 200m en aval du château qui aurait pu servir de lieu rituel, nommé le jardin des fées

par Charles Matthis (1851-1925), archéologue autodidacte et spécialiste de l'histoire des Vosges

ayant beaucoup apporté à la transmission de connaissances historiques ainsi qu'à la préservation

du site. Mais les informations sont trop hypothétiques pour pouvoir effectuer une restitution

fiable de cette période.

L'époque romaine (I-Ve siècle après J.C) : des vestiges d’un temple romain dédié au dieu

Mercure ont été trouvés, sur le site non loin du château. Salesse (2018) évoque également une

stèle mentionnant la VIIIe légion romaine qui a été également retrouvée au XVIIIe siècle,

attestant d'une présence militaire. Cela justifierait alors la présence du Wachtfels, le rocher de

grès placé au nord-est du plateau. Il servait de poste d'observation qui surplombe la vallée, et

pas d'assise pour le temple dont des vestiges sont placés en dessous (voir Figure 1) comme nous

pourrions le penser aux premiers abords. En réalité, ces pierres ont été placées par Matthis pour

éviter leur destruction. Mais le temple à l'origine n'était pas placé ici. Dans tous les cas, le

château ne semble pas être construit à cette époque, nous ne représenterons donc pas le site dans

cette période.

Figure 1. Rocher du Wachtfels avec les vestiges du temple romain.

L'époque post-romaine et médiévale (VI-XVIe siècle après J.C) : Cette période est de loin

la plus complexe puisque beaucoup de sources se contredisent sur l'historique du site de

Wasenbourg, et notamment la construction du château. Les différents auteurs se coordonnent

pour estimer sa création au XIIIe siècle, mais la date précise n'est pas établie (peut-être 1272

ou 1275). C'est en 1592 que le château est mentionné comme étant en ruines d’après Salesse

1.3/ Communication et mise en valeur du modèle

3

(2018). Nous ne connaissons pas les raisons exactes, mais c'est la piste la plus probable pour

dater la situation de ruines que nous pouvons observer encore aujourd'hui.

L'époque moderne (XVII-XXIe siècle après J.C) : Au cours de cette période, de nombreux

archéologues, dessinateurs et historiens amateurs ou professionnels se sont intéressés au

château de Wasenbourg. Plusieurs associations se sont relayées pour préserver ce patrimoine,

notamment le Club Vosgien de Niederbronn-Reichshoffen (dont Matthis est l'un des membres

fondateurs). Des travaux de dévégétalisation ont été effectués (en 2005 et 2017), ainsi que des

projets de restauration mineures comme la réparation de la fenêtre gothique sur la façade Est

avec mise en place d'escaliers en bois (qui n'existent plus aujourd'hui) pour observer en hauteur

en 1909, la réparation de la cheminée en 2009 ou encore la mise en place des vestiges du temple

romain sur le Wachtfels en 1912. Toutefois, nous ne représenterons pas ces légères

modifications par manque de temps au cours de cette étude.

Nous pouvons déduire de cette définition historique du château 2 étapes historiques que nous

allons représenter pour ce projet : l’état actuel en ruines ainsi que l’état initial (c’est-à-dire la

période de sa construction, au XIIIe siècle). La figure 2 met en évidence ces 2 états avec une

photo prise sur le site et un essai de restitution d’un dessinateur et historien.

Figure 2. Photographie aérienne du château de Wasenbourg (état actuel) / Essai de restitution du château de

Wasenbourg à l’époque médiévale par Mengus (2004).

1/ Etat de l’art sur la restitution 4D

appliquée au château de Wasenbourg

1.3/ Communication et mise en valeur du modèle

Après avoir réussi à effectuer une modélisation 4D du modèle, en tenant compte de la

visualisation des textures et de la représentation des incertitudes, le choix de la méthode de

communication des données est primordial. C’est notamment le cas dans le cadre de notre projet

où la restitution archéologique du château de Wasenbourg a pour but d’être exploitée pour la

revalorisation touristique de ce dernier. Bien que, d’après le cahier des charges il est demandé

d’effectuer une vidéo de visite virtuelle, il est intéressant de parcourir dans cette partie plusieurs

méthodes pour mettre en valeur le modèle et le diffuser à un public pas nécessairement

spécialiste de l’histoire du château.

1.3/ Communication et mise en valeur du modèle

4

a) La vidéo de visite virtuelle

De nos jours, l’une des méthodes les plus répandues pour visualiser un modèle 3D sans utiliser

une représentation physique (comme une maquette en bronze par exemple) est la visite virtuelle

sous forme de vidéo. Comme son nom l’indique, le principe est de présenter le modèle 3D en

se déplaçant dans l’environnement 3D, comme une visite. Facile à concevoir avec des logiciels

de modélisation 3D disposant de modules d’animation comme Blender (Blender@2023) ou des

logiciels de capture vidéo, cette méthode a été exploitée sur plusieurs PFE précédents,

notamment ceux de Rocha (2022) et Benazzi (2018) qui ont communiqué leurs résultats sous

forme vidéo.

Afin de proposer une visite virtuelle agréable à regarder, il semble nécessaire d’avoir un

défilement de la caméra fluide pendant l’intégralité de la vidéo. Pour cela, la plupart des

logiciels de modélisation 3D utilisent des points de jonction, définis par l’utilisateur, sur

lesquels vont passer la caméra virtuelle (qui est un objet 3D) qui enregistre la vidéo. Ces points

forment alors un chemin de caméra. D’autres paramètres tels que la vitesse de déplacement ou

l’orientation de la caméra peuvent également être définis par l’utilisateur. Rocha (2022) a

proposé une planification des chemins de caméra pour sa visite virtuelle, en exploitant le

croquis 2D du château de Lichtenberg. Pour avoir plusieurs séquences vidéo, 4 chemins de

caméra ont été effectués (voir figure 13).

Figure 3. Planification des chemins de caméra pour la vidéo de visite virtuelle du château de Lichtenberg par Rocha

(2022).

Cette méthode a pour avantage de permettre l’utilisation de logiciels de montage pour

agrémenter la vidéo. Nous pouvons penser par exemple à une voix-off servant de guide pendant

la visite virtuelle, ou l’utilisation de textes pour légender des éléments architecturaux du

château. De plus, la vidéo permet de définir un rythme de visite idéal, tout en permettant de

visualiser le modèle à différents angles. Cela peut s’avérer intéressant pour observer en détail

une partie du château non accessible au public, ou pour représenter plusieurs phases historiques.

Toutefois, cette méthode ne permet aucune interaction directe avec l’utilisateur.

1.3/ Communication et mise en valeur du modèle

5

b) Les méthodes plus interactives : représentations VR, AR et applications
mobiles

Une autre approche pour communiquer et mettre en valeur un modèle 3D est l’interaction entre

ce dernier et l’utilisateur. En effet, intégrer un public dans une scène virtuelle permet un accès

libre à des zones interdites, visualiser de plus près une zone en hauteur comme si nous y étions

vraiment, ou encore proposer des interactions ludiques voire didactiques pour le plus jeune âge.

De plus en plus de sites touristiques s’y intéressent. Nous pouvons citer le château de Versailles,

le Vatican ou encore le British Museum qui proposent des visites virtuelles en VR (Virtual

Reality), AR (Augmented Reality) ou sur applications mobiles interactives (BeauxArts@2023).

Entre autres, Benazzi (2018) s’est intéressé à intégrer les données du site de Kagenfels pour une

immersion en réalité virtuelle.

5.1/ Présentation du matériel utilisé

6

5/ Mise en valeur du modèle :

représentation dans le Cube VR

Après avoir effectué toutes les démarches de la restitution 4D, la dernière étape de la chaîne de

traitement (voir figure 3) consiste à mettre en valeur le modèle afin de le communiquer au

public. Après discussion avec les différents acteurs du projet, il a été décidé que les châteaux

français seront présentés dans une même vidéo à travers une visite virtuelle. Plus exactement,

il est prévu que nous travaillions en collaboration avec un monteur vidéo en lui fournissant les

données nécessaires. Nous avons vu en partie 1.3.a) que cette méthode est répandue dans le

cadre de la présentation d’une restitution archéologique, et présente plusieurs avantages.

Toutefois, afin d’obtenir un rendu visuel soigné, nous avons jugé que les différents châteaux

modélisés doivent avoir une cohérence entre eux, que ce soit dans le choix de lumière, des

textures, de vitesse et d’orientation de la caméra, etc. Par manque de temps et dans la mesure

où d’autres châteaux seront modélisés dans le futur proche, nous avons décidé d’attendre que

tous les châteaux soient modélisés pour harmoniser le rendu visuel (à travers un logiciel

commun), plutôt que de proposer tout de suite une vidéo qui sera surement remodifiée par la

suite.

Pour cette raison, nous nous sommes tournés sur une autre méthode de communication, bien

plus interactive que la vidéo de visite virtuelle : la représentation du modèle 4D dans le Cube

VR. Comme expliqué dans l’introduction, cette nouvelle technologie acquise en décembre 2022

par l’INSA Strasbourg propose une exploration VR différente des méthodes conventionnelles

telles que le casque. Dans la mesure où aucun projet n’a encore été proposé sur le Cube dans

l’établissement, nous avons pour objectif de comprendre le fonctionnement de ce dernier et de

découvrir un maximum d’outils pour proposer une visite virtuelle interactive du château de

Wasenbourg, en exploitant les différentes phases historiques représentées.

Dans cette ultime partie, nous allons présenter plus en détails le fonctionnement du Cube, ainsi

que le logiciel Unity sur lequel nous allons utiliser des outils intégrés pour proposer la

visualisation VR.

5.1/ Présentation du matériel utilisé

a) Le Cube VR

Pour commencer, il est important de comprendre le matériel qui sera utilisé pour cette

représentation. Le Cube VR, développé par la société VirtualConcept (VirtualConcept@2023),

correspond à un système de réalité virtuelle utilisant 5 projecteurs sur 5 faces blanches, formant

une partie de l’intérieur d’un cube de 3x3x3 mètres (voir figure 34). Une homographie est

appliquée aux différentes projections pour proposer une visualisation en temps réel cohérente

entre les différentes faces, sans bordures visuelles. De plus, le système propose une visualisation

3D pour améliorer les reliefs.

5.1/ Présentation du matériel utilisé

7

Figure 4. Description des composants du Cube VR (DEC@2023) / Exemple d'application du Cube VR
(VirtualConcept@2023).

L’utilisateur est placé à l’intérieur. Comme nous pouvons le voir dans la figure 35, il dispose

de lunettes 3D ainsi que des manettes jumelles connectées en Bluetooth sur un ordinateur qui

calcule le rendu graphique. Bien qu’en théorie, plusieurs types de manettes sont utilisables,

nous disposons d’une paire de Joycon, issue de la console de jeu Nintendo Switch, développée

par la firme japonaise Nintendo. Ces 3 composants (lunettes 3D + 2 manettes) disposent de

cibles sphériques (6 pour les lunettes, 3-4 pour chaque manette), permettant de capter les

mouvements grâce à un système de tracking infrarouge 3D, conçu par Optitrack. Au total, 4

capteurs sont placés dans le Cube. De plus, jusqu’à 5 personnes peuvent être immergées dans

le monde virtuel en même temps. Les autres joueurs utilisent également des lunettes 3D, mais

ne disposant pas de capteurs. Par conséquent, le système de tracking ne s’effectue que sur le

joueur principal.

Figure 5. Autre exemple d'application du Cube VR (VirtualConcept@2023) / Description des composants des Joycon

(JeuxActu@2017).

Comme expliqué précédemment, un ordinateur permet d’effectuer les calculs et la

représentation VR du Cube. Plusieurs logiciels sont installés, avec des utilisations différentes :

- Le logiciel Motive, développé par Optitrack, permet la calibration et la détection des

capteurs infrarouges.

- Le logiciel DEC, qui est un espace permettant de télécharger, partager des modèles VR

à exploiter sur le Cube. Il est également possible de monitorer les projecteurs ainsi que

des paramètres lors d’une représentation.

- Le logiciel Unity, qui sert à concevoir la représentation VR.

Capteurs infrarouges

Projecteurs

Station de

travail

5.2/ Premières approches de Unity et import du modèle

8

b) Le logiciel Unity avec le SDK DEC

Bien que nous ayons principalement effectué la modélisation 4D sur Blender, nous devons

travailler désormais sur le logiciel gratuit Unity, développé par Unity Technologies, afin de

proposer une représentation dans le Cube VR. Tout comme Blender, Unity propose beaucoup

d’outils propres à un logiciel de modélisation 3D. Mais il est plus exact de le considérer comme

un moteur de jeu. En effet, il est plus orienté dans la conception de jeux-vidéo, notamment grâce

à sa possibilité de construire une application indépendante sur de nombreux supports

(IOS/Andoid, PC, consoles de jeu, VR, etc.) ainsi que des outils d’interaction avec l’utilisateur.

Pour être plus précis, le logiciel Unity se décompose en 2 éléments complémentaires :

- Le logiciel Unity Hub, qui correspond à un gestionnaire de projets Unity. Il permet de

retrouver des projets Unity déjà ouverts, de créer des projets en suivant un template

(gabarit qui modifie l’interface, les éléments préfabriqués par défaut selon l’objectif du

projet), de savoir quelle(s) version(s) du logiciel sont installée(s), ou encore d’accéder

aux diverses ressources en ligne du site et de la communauté.

- Le logiciel Unity Editor, qui permet de modifier un projet Unity à travers les différents

outils. Dans la mesure où cela correspond au logiciel principal sur lequel nous allons

travailler, nous l’appellerons pour la suite du rapport Unity.

Une fonctionnalité d’Unity qui va nous intéresser dans ce projet est la possibilité d’intégrer des

programmes, des scripts dans le projet. Par défaut, Unity utilise le langage C# en exploitant le

logiciel VisualStudio, intégré dans le logiciel. Mais il est également possible d’intégrer des

ensembles de scripts préfabriqués pour faciliter la programmation. Nous appelons cela des kits

de développement logiciel, ou SDK (Software Développement Kit). La société DEC a alors

conçu un SDK regroupant de nombreux scripts utiles pour la représentation VR, et notamment

pour le Cube VR. C’est ce que nous allons utiliser ici. De plus, nous disposons d’un template

de projet personnalisé comprenant le SDK DEC déjà importé ainsi que des éléments 3D dans

la scène que nous pourrons exploiter. Bien qu’il soit possible d’intégrer ce template sur Unity

Hub pour y accéder facilement, cela n’a pas été mis en place pour notre Cube. Nous avons alors

procédé en copiant un projet vierge qui comporte tous les éléments dont nous avons besoin.

Afin d’éviter des problèmes de compatibilité, nous utilisons une version ancienne de Unity dans

laquelle a été conçu le SDK, c’est-à-dire la version 2019.4.40f1.

5.2/ Premières approches de Unity et import du modèle

a) Description de l’interface, des GameObjects et des Components

Maintenant que nous avons découvert le matériel à notre disposition, nous pouvons nous

intéresser au traitement du modèle 4D sur Unity. Pour commencer, il faut comprendre

l’interface du logiciel avec ses différentes fenêtres. Il est possible de modifier la position et le

contenu de ces dernières, mais nous avons souhaité conserver l’interface par défaut, qui se veut

à notre sens complète et bien répartie. Comme nous pouvons le voir dans la figure 36, nous

avons 5 fenêtres principales :

- Au milieu haut se trouve la scène 3D. Des outils de navigation, de sélection, de

modification ou de création d’objets sont présents, assez similaires à un logiciel comme

Blender (mis à part la différence des raccourcis clavier). Dans cette fenêtre se trouve un

5.2/ Premières approches de Unity et import du modèle

9

autre onglet, Game, qui propose une prévisualisation du rendu final, avec possibilité

d’essayer les interactions que nous avons programmées.

- En bas à gauche se trouve la fenêtre des assets. Cela correspond à un gestionnaire des

différents fichiers et éléments à importer dans le logiciel (interne au projet). Ils ne sont

cependant pas encore intégrés dans la scène du moteur de jeu. Il est possible de

regrouper les différents fichiers en dossiers, comme dans un explorateur de fichiers

classique. Dans le template à notre disposition, plusieurs dossiers vides sont déjà

présents pour séparer selon le type (modèle, son, script, etc.). Mais il faut savoir que

dans un projet Unity vierge aucun dossier n’est présent, il faut les concevoir soi-même

si besoin. Nous y trouvons également l’onglet Console qui, comme tout logiciel de

programmation, recense tous les messages de résultats, de commentaires ou d’erreurs

des différents scripts et fonctions du logiciel quand ils sont utilisés.

- En haut à gauche correspond à la fenêtre de la hiérarchie, qui comprend tous les

éléments (GameObjects) calculés et représentés dans la scène du moteur de jeu. Le

principe est assez similaire au système de collections de Blender.

- A droite se trouve la fenêtre d’inspector, présentant les propriétés de l’élément

sélectionné. Dans le cas d’un GameObject, tous les Components sont affichés, avec la

possibilité de modifier les paramètres.

Figure 6. Présentation de l'interface par défaut d'Unity.

Il faut savoir que dans Unity, tout élément intégré dans la scène (et donc présent dans la fenêtre

de la hiérarchie) est considéré comme un GameObject (objet de jeu). Cela peut correspondre

par exemple à un objet 3D, un son audio, une image 2D, voire rien. Ce sont alors les

Components (composants) qui déterminent toutes les spécificités de l’objet : position, type de

modèle, son audio émis, effet de collision, texturage, interaction selon conditions, etc. Tous ces

Components correspondent à des scripts dont il est possible de définir des paramètres de

plusieurs types (case à cocher, valeur numérique, choix parmi un menu déroulant, nom du

GameObject, etc.). Pour un GameObject vide, seul le Component Transform est présent,

contenant les informations sur la position de l’origine, la rotation et l’échelle de l’objet. Mais il

est possible de créer un GameObject d’un type spécifique dans le menu du même nom, situé en

haut à gauche dans l’interface (voir figure 37). Dans ce cas, le GameObject disposera par défaut

5.2/ Premières approches de Unity et import du modèle

10

des Components associés selon le type choisi. Si nous prenons l’exemple d’un Cube, les

Components seront :

- Transform, commun à tout GameObject.

- Mesh filter, script permettant de définir la référence du maillage (dans notre exemple,

le modèle Cube, présent par défaut dans tout projet Unity)

- Mesh Renderer, script permettant d’effectuer le rendu du maillage référencé dans le

Component Mesh filter, avec quelques paramètres concernant les effets d’ombres et de

lumière.

- Mesh Collider, script permettant d’appliquer un Collider (collisionneur) sur l’objet, qui

est une surface invisible (correspondant approximativement à la surface de l’objet) qui

prend en charge les collisions de l’objet avec les autres éléments de la scène. Des

variantes de ce script sont utilisées pour certains modèles 3D, utilisant une primitive

géométrique plutôt qu’une estimation d’un maillage (Box Collider pour un cube,

Capsule Collider pour un cylindre par exemple).

- Material, définissant le matériau choisi pour le texturage. Par défaut, une texture grise

unie est appliquée.

Figure 7. Exemple de création d’un cube sur Unity. / Fenêtre inspector du cube créé.

Bien qu’en théorie, nous pouvons créer n’importe quel élément à partir d’un GameObject vierge

tant que nous ajoutons les Components correspondants, il est plus pratique d’utiliser ces objets

préconstruits. Mais dans la mesure où nous avons déjà conçu le modèle 4D sur Blender, nous

n’irons pas en détail sur tous les composants et objets associés disponibles sur Unity, nous nous

limiterons à ceux qui nous seront utiles dans le rendu final.

b) Import du modèle 4D

La première étape est donc d’importer le modèle 4D sur Unity. D’après la documentation du

logiciel (Unity@2022), les formats de modèles 3D pris en charge sont FBX, OBJ, DAE

(Collada) et 3DS. Parmi ces propositions Blender peut exporter au format FBX, OBJ et DAE.

Il est toutefois recommandé d’utiliser les formats FBX et OBJ, bien plus répandus pour la

plupart des logiciels de modélisation 3D. La principale différence entre ces 2 formats est que le

format OBJ utilise un 2ème fichier, au format MTL, qui contient toutes les informations liées au

matériau du modèle (donc du texturage). Nous avons essayé d’importer le modèle sous ce

format mais le matériau ne s’applique pas automatiquement. D’après certains forums de

discussion dédiés, des solutions existent mais nécessitent un script ou ne fonctionnent que sur

5.2/ Premières approches de Unity et import du modèle

11

une version d’Unity précise. C’est pour cela que nous nous sommes orientés sur le format FBX,

n’utilisant qu’un seul fichier et présentant moins de problèmes pour importer la texture.

2 solutions sont alors possibles : importer sur Unity le fichier FBX, ou importer le fichier

Blender (format blend). En effet, Unity peut lire certains formats de fichiers de projet de logiciel

de modélisation 3D, dont celui-ci. Mais pour être plus exact, dans ce cas Unity effectue un pré-

export en format FBX du modèle. Quelques légères différences subsistent entre ces 2 solutions

(par exemple le fichier blend s’actualise automatiquement si ce dernier a été modifié), mais ce

ne sera pas très important dans le cadre de notre projet.

Quelle que soit la méthode, pour exporter correctement le modèle issu de Blender sur le projet

Unity, il faut extraire en parallèle les textures du projet sur Blender. En effet, par défaut sur ce

logiciel les fichiers de textures sont importés depuis leur répertoire d’origine sur le disque. Il

est possible de les associer au projet de sorte que les données externes soient intégrées

directement dans le fichier FBX ou blend. Mais nous avons découvert que lors de l’import sur

Unity, les textures ne sont pas détectées, du moins uniquement celles qui correspondent à une

couleur unie. Les objets 3D qui utilisent la cartographie UV comme matériau ont une texture

par défaut (gris). La solution trouvée est donc la suivante :

- (a) Sur Blender, associer tous les fichiers de textures au projet (File > External Data >

Pack Ressources) pour ensuite les désassocier (File > External Data > Unpack

Ressources > Use files in current directory). Dans le même répertoire que le fichier de

projet, un dossier textures est créé, contenant toutes les données externes utilisées (dans

notre cas, les différentes images correspondant aux différentes cartes UV).

- (b) Sur Unity, importer dans la fenêtre des assets le fichier de projet blend ainsi que le

dossier contenant les textures en effectuant un glisser-déposer (utiliser l’export du

fichier au format FBX fonctionne également).

- (c) En sélectionnant le fichier de projet, la fenêtre inspector présente les propriétés de

l’import ainsi qu’une prévisualisation du modèle sur la scène. Dans l’onglet Materials,

le logiciel recense tous les matériaux utilisés et propose de les redéfinir sur Unity. Il est

possible de sélectionner un par un les matériaux pour chaque objet, mais ici nous allons

extraire le dossier textures créé précédemment pour remplir automatiquement tous les

champs (Extract materials > sélectionner dans le répertoire des assets lié au projet le

dossier textures importé à l’étape précédente). Pour chaque objet, un fichier de matériau,

au format MAT, est créé dans le même répertoire que le dossier de textures.

- (d) Glisser-déposer le fichier blend de la fenêtre des assets dans la fenêtre de la

hiérarchie.

La figure 38 présente des captures d’écrans de ces étapes pour cette solution. Dans cet exemple,

nous avons importé le fichier de projet Test.blend qui est une copie d’une des versions du

modèle 4D du château. Il est important de préciser que ces données ont été placées dans le

répertoire Editor dans les assets, mais il est possible de les séparer dans des répertoires plus

appropriés (notamment le répertoire Textures pour le dossier de textures du modèle, et le

répertoire Models pour le fichier de projet).

Nous avons remarqué à travers la prévisualisation du modèle que même sans extraire les

matériaux (étape c), les textures sont bien affichées. Cela est dû au fait que Unity récupère les

informations liées aux matériaux utilisés dans le projet Blender. Mais ces derniers ont pour

désavantage de ne pas être modifiables (les paramètres sont grisés). Le fait de créer des

nouveaux fichiers de matériaux dans l’environnement de Unity (en utilisant l’outil d’extraction

5.2/ Premières approches de Unity et import du modèle

12

des matériaux) corrige ce problème. Cela est important car, même si en théorie toutes les

informations du matériau peuvent être importées, en pratique seule une partie des informations

sont récupérées. Cela se remarque notamment sur la cartographie UV : lorsqu’un matériau est

sélectionné, l’inspector propose de définir plusieurs paramètres, et notamment plusieurs cartes :

albedo, metallic, normal, height, occlusion map, etc. (voir détails en partie 1.1.c). Dans notre

cas, bien que plusieurs cartes aient été appliquées sur Blender (Diffuse, normal, displacement,

Occlusion map), par défaut seules l’albedo map et/ou la normal map ont été identifiées. Cela

est dû au fait que Unity ne comprend pas le système de Geometry Nodes de Blender (voir annexe

A.1), et ne réussit à déduire que les cartes UV les plus génériques. Il faut donc pour chaque

matériau vérifier que les différentes textures sont bien appliquées, et rajouter celles qui sont

manquantes (par le biais d’un glisser-déposer). Il faut aussi veiller à ce que les différentes cartes

appliquées sur Blender puissent être adaptées à celles utilisées par Unity. Par exemple, nous

avons vu dans l’état de l’art (partie 1.1.c) que, malgré de grandes similarités, la diffuse map

utilisée sur Blender est différente de l’albedo map même si elles ont la même fonction. Certains

paramètres peuvent être modifiés. Après plusieurs essais, nous avons conclu que l’utilisation

des albedo map, normal map et occlusion map sont suffisants pour obtenir un rendu graphique

équivalent à celui obtenu sur Blender, sans avoir à effectuer des modifications spécifiques (pour

l’albedo map, Unity propose un paramétrage de la lumière cohérent avec la Diffuse map

importée). Il faut également vérifier la résolution des textures en les sélectionnant dans les

assets. L’inspector présente alors les paramètres d’import de l’image et notamment la

résolution, qui est modifiable : 1k (1024x1024 pixels), 2k (2048x2048 pixels), 4k (4096x4096

pixels), etc.

En ce qui concerne la fenêtre de hiérarchie, il faut savoir que Unity ne prend pas en compte le

système de collections de Blender. En effet, comme nous pouvons le voir dans la figure 38,

lorsqu’un modèle est placé dans la scène (étape d), un élément parent est créé (qui correspond

à un GameObject vierge ayant le nom du fichier importé), qui regroupe tous les éléments du

projet Blender comme enfants. Pour être plus précis, ce groupe est importé en tant que prefab

(élément préfabriqué), utilisé en principe pour des groupes de GameObjects configurés. Cela

se distingue par une icône de cube bleu dans la hiérarchie. Afin de déplacer les éléments enfants

indépendamment de l’élément parent, il faut désassembler le prefab (Clic droit dans la

hiérarchie > Unpack prefab). Pour pouvoir répartir les objets dans plusieurs groupes, il faut

créer un GameObject vide et mettre en enfant les GameObjects que nous souhaitons rajouter

(glisser-déposer).

Tout comme pour Blender, nous nous sommes interrogés pour l’import sur Unity du modèle à

la phase historique, disposant de 2 représentations (textures réalistes et échelle de couleur

représentant l’incertitude) : est-il préférable d’importer un seul modèle avec 2 groupes de

texture, ou plutôt 2 modèles différents avec leurs propres textures ? Malgré le fait que dédoubler

le modèle augmente le poids du projet, il est plus simple sur Unity d’afficher/masquer un groupe

de GameObjects dans la scène que de modifier un par un le matériau des différents éléments

présents sur la scène. Puisque nous allons chercher par la suite à proposer une interaction

permettant de permuter rapidement parmi les 3 représentations, nous allons faire le choix de

prendre plusieurs modèles avec leurs propres textures.

5.3/ Exploitation d’un menu interactif et description du mouvement dans le monde

virtuel

13

(a) (b)

(c)

(d)

Figure 8. Captures présentant les étapes pour importer le modèle 4D de Blender vers Unity.

5.3/ Exploitation d’un menu interactif et description du
mouvement dans le monde virtuel

a) Description du XRPlayer et de la représentation dans le Cube

Nous avons pu découvrir en partie 7.2 une première approche des outils et interfaces génériques

du logiciel Unity. Nous allons désormais nous intéresser plus en détails aux éléments propres à

la représentation dans le Cube VR. Pour commencer, comme expliqué en partie 7.1.b, nous

avons utilisé un template contenant, en plus du SDK DEC, des éléments 3D. Il s’agit plus

précisément de prefab déjà intégrés à la scène. Celui qui va nous intéresser est nommé

XRPlayer. La principale difficulté ici est que, à la rédaction de ce rapport, aucune

5.3/ Exploitation d’un menu interactif et description du mouvement dans le monde

virtuel

14

documentation écrite n’a été encore été effectuée ni sur l’utilisation des scripts du SDK DEC,

ni sur l’utilisation de ce prefab. Nous avons uniquement à notre disposition des tutoriels vidéo

réalisés par VirtualConcept, expliquant les bases de Unity ainsi que l’utilisation de quelques

scripts du SDK. Par conséquent, concernant le prefab nous avons progressé à l’aveugle.

À travers plusieurs essais et recherches détaillés, nous avons tout de même réussi à comprendre

le principe du prefab XRPlayer. Ce dernier regroupe beaucoup d’éléments, il serait fastidieux

de tous les décrire un par un. Nous allons décrire uniquement les différents sous-ensembles du

prefab tout en allant plus en détail sur ceux que nous allons exploiter. Tout d’abord, le

GameObject XRPlayer n’est pas vide : il contient plusieurs composants complémentaires,

notamment le composant Player qui permet en un clic (sur le bouton vert représentant une icône

du Cube) de construire l’application au format .exe permettant de visualiser la scène du projet

en 3D dans le Cube. Il est également possible de créer l’application en utilisant les outils

conventionnels de Unity (File > Build Settings > Sélectionner le format PC > Cave > Build),

mais sur les différents essais effectués nous avons constaté plusieurs erreurs à l’exécution du

programme (l’effet 3D ne se lance pas, l’application rencontre une erreur fatale), là où en

utilisant le raccourci lié au composant nous ne rencontrons aucun problème spécifique. Nous

procéderons désormais ainsi pour générer le programme. Ce dernier est placé automatiquement

dans le dossier Build du répertoire du projet Unity, accompagné de fichiers complémentaires

de données (voir figure 39).

Figure 9. Contenu du dossier après avoir construit le programme (application à exécuter en surbrillance).

Afin de mieux comprendre les différents éléments du prefab, il faut savoir que lors de

l’utilisation du Cube VR, les différentes faces projetées représentent une vue immersive 3D à

la 1ère personne. Mais la station de travail représente en même temps une vue alternative de la

scène, sans effets 3D. Nous pouvons y voir la vue à la 1ère ou la 3ème personne d’un avatar virtuel

animé, représentant un homme en tenue d’ouvrier, personnifiant le joueur principal du Cube en

copiant ses mouvements. La position et l’orientation de la tête de l’avatar correspondent alors

au champ de vision de l’utilisateur sur les faces du Cube. De plus, dans cette vue une interface

permet de quitter l’application, modifier des paramètres, prendre des captures photo et vidéo,

etc.

Le prefab XRPlayer comporte 2 GameObjects enfants, eux-mêmes parents d’autres groupes

d’éléments :

- Le GameObject Root, contenant tous les éléments liés au joueur de manière générale

- Le GameObject UIRoot, contenant tous les éléments liés à l’interface de la vue

alternative.

5.3/ Exploitation d’un menu interactif et description du mouvement dans le monde

virtuel

15

Nous ne serons pas amenés à travailler sur l’UIRoot, nous allons donc nous attarder sur le Root,

contenant tout élément pouvant contribuer à l’immersion VR de l’utilisateur. Entre autres, nous

pouvons citer le groupe CaveUser qui contient dans les groupes Right et Left (symbolisant les

mains gauches et droites) du GameObject parent MultiFace les modèles 3D des manettes

affichés dans la scène (qui représentent en réalité des manettes PS Move, conçues par Sony).

Ces derniers sont accompagnés d’un faisceau lumineux indiquant où pointe la manette, ce qui

peut être pratique pour viser un élément (un bouton par exemple). Des scripts sont également

appliqués pour permettre la détection de mouvements et de déplacer les manettes dans la scène

virtuelle en corrélation avec le déplacement des manettes de l’utilisateur. Dans ce même groupe

se trouvent les objets servant à la détection du mouvement de la tête (dans le groupe Head) et

plus globalement du corps (dans le groupe Body), permettant de définir en temps réel le

déplacement de la caméra dans le Cube et du modèle 3D de l’ouvrier, contenu dans un autre

prefab présent par défaut dans le template nommé Avatar comme nous pouvons le voir dans la

figure 40.

Figure 10. Détail des prefab par défaut dans le template (à gauche) avec le modèle 3D de l'avatar dans la scène (à

droite).

b) Navigation dans le monde virtuel

Lorsque le programme s’exécute, les différentes faces du Cube affichent le point de vue de

l’avatar, qui est situé à l’origine du repère cartésien (car c’est aux coordonnées (0,0,0) que les

prefab associés sont placés par défaut, nous n’avons pas modifié dans le projet Unity la position

de ces éléments). L’orientation de la tête est prise en compte (grâce aux cibles placées sur les

lunettes, voir partie 7.1.a), ce qui modifie l’orientation du champ de vision. De plus, lorsque

l’utilisateur se déplace physiquement dans le Cube, les projections 3D sont modifiées de sorte

que la vision de la caméra virtuelle soit cohérente avec la vision du joueur. Par exemple, si nous

nous approchons d’une face en particulier, un effet de distorsion est appliqué sur les autres faces

pour rajouter de la profondeur. Cela donne l’impression que nous nous sommes éloignés des

autres faces comme si nous nous sommes légèrement déplacés dans le monde virtuel. Pour

pouvoir se déplacer, il faut utiliser les 2 manettes à notre disposition (voir figure 35). Dans les

paramètres présents dans l’interface de la vue alternative, il est possible d’alterner entre 3 modes

de déplacement :

- Par translation : mode de déplacement immersif où l’avatar se déplace en effectuant

une translation, en prenant compte de la gravité (sol) et des collisions avec les objets de

la scène (mur). Pour effectuer une translation, il faut déplacer le joystick analogique de

la manette en avant ou en arrière. L’avatar se déplacera dans la direction que vise la

5.3/ Exploitation d’un menu interactif et description du mouvement dans le monde

virtuel

16

manette (par exemple, si la manette vise à gauche par rapport à l’orientation de l’avatar,

ce dernier se déplacera vers la gauche). Orienter les joysticks à gauche ou à droite permet

d’effectuer une rotation dans la scène, sans déplacer l’avatar. La vitesse de translation

et de rotation peut être modifiée dans les paramètres. Les commandes attribuées aux

Joycon étant identiques, orienter les joysticks des 2 manettes dans la même direction

simultanément permet de doubler la vitesse. Ce mode de déplacement propose une

navigation dans le monde virtuel réaliste.

- En volant : mode de déplacement similaire à la translation mais en ne prenant pas

compte de la gravité et des collisions. L’orientation verticale des manettes permet de

prendre de la hauteur. Cela est intéressant pour voir plus en détail des éléments à forte

altitude ou pour traverser facilement des objets 3D, permettant de passer d’une zone à

une autre plus rapidement.

- Par téléportation : mode de déplacement plus rigide où le déplacement s’effectue par

téléportation de l’avatar d’une position à une autre. Il faut utiliser les joysticks pour faire

apparaître une zone au sol devant la manette, qui indique la position dans laquelle

l’avatar va se téléporter lorsque le joystick sera relâché. Cela est intéressant pour éviter

un déplacement de la scène constant, ce qui permet d’atténuer l’effet de Motion sickness

(mal des transports) qui rend l’expérience VR désagréable pour les personnes sensibles.

Il est important de préciser que, pour que les modes de déplacement par translation et par

téléportation fonctionnent correctement, il faut indiquer au programme les modèles 3D qui

doivent être considérés comme du sol. Cela est possible en utilisant des scripts du SDK DEC.

c) Exploitation des scripts Floor et Wall sur les modèles 3D

Afin de proposer une navigation immersive, il faut appliquer à la scène les notions de collisions

et de gravité à travers les modèles 3D de la scène. Pour cela, nous pouvons utiliser les scripts

Floor et Wall du SDK DEC.

L’ensemble des scripts sont au format DLL (Dynamic Link Library, Bibliothèque de liens

dynamiques), qui contiennent un ensemble de fonctions et de classes compilées et utilisées par

d’autres programmes. Tous ces scripts sont regroupés dans un Assembly, qui correspond au

fichier DEC.XR.dll, placé dans le répertoire Assets>Plugin_Assemblies>DEC. Ce fichier est

également au format DLL. Puisque les lignes de code contenues dans ces fichiers sont déjà

compilées, il est difficile de les lire avec des logiciels de programmation. Plusieurs solutions

existent, mais nous avons choisi d’utiliser le logiciel JetBrains dotPeek, qui permet de

décompiler un Assembly en code au format C# (JetBrains@2023), en isolant les différents

scripts associés. Grâce à cela nous pouvons analyser le code des différents composants que

propose le SDK. Par manque de temps, nous n’avons pas réussi à définir avec certitude le

fonctionnement de l’ensemble des scripts, mais nous avons pu mieux comprendre le

comportement des scripts principaux que nous allons utiliser dans ce projet.

Le script Floor permet, lorsqu’il est ajouté en tant que composant d’un modèle 3D (Add

Component>Utiliser la barre de recherche pour trouver le script), de donner à ce dernier le

comportement d’un sol. Pour fonctionner, le modèle 3D doit obligatoirement disposer d’un

composant créant un Collider (Mesh Collider, Box collider, etc. Voir partie 7.2.a). Si ce n’est

pas le cas, le composant Floor affiche un message d’alerte à ce sujet et propose de créer en un

clic le composant correspondant. Entre autres, ce script définit la fonction AllowTeleportation.

Ce dernier vérifie si, pour les polygones du Collider situé dans la zone sur laquelle l’avatar va

5.3/ Exploitation d’un menu interactif et description du mouvement dans le monde

virtuel

17

se déplacer ou se téléporter, l’angle formé entre la normale du polygone et l’axe vertical (axe Z

dans le repère cartésien) est inférieur à une variable nommée maximumSlopeAngle, représentant

l’angle de pente maximale. Si la condition est réussie, alors le polygone est considéré comme

un sol, l’utilisateur peut s’y déplacer (lorsque le mode de déplacement est défini par translation,

le modèle 3D fait opposition à la force de gravité appliquée sur l’avatar) ou se téléporter. Pour

faire simple, le script applique l’effet de sol uniquement sur les parties qui ne sont pas trop

pentues, en fonction d’un seuil d’angle maximal. Par défaut, la variable maximumSlopeAngle

est fixée à 45°. Mais il est possible de définir cette valeur en tant que paramètre dans le

composant en utilisant la variante du script, nommée Floor (custom slope), ayant la même

fonction mais en laissant au développeur le choix de définir pour la variable

maximumSlopeAngle une valeur comprise entre 0 et 90°. La figure 41 présente les composants

liés à ces 2 scripts dans l’inspector. Dans les 2 cas, le paramètre Teleportation Target,

définissant si le modèle 3D peut être ciblé pour une téléportation ou non, est également présent.

Figure 11. Définition des composants Floor et Floor (custom slope) dans l'inspector.

Il est important de préciser que, lorsque nous sommes dans le mode de déplacement par

translation, si nous naviguons entre 2 zones de sol ayant une hauteur différente (par exemple

lorsque nous montons un escalier), jusqu’à un certain seuil de différence de hauteur l’avatar va

monter sur la zone la plus haute. Nous n’avons pas réussi à trouver la valeur exacte de ce seuil

(aucune variable ou fonction n’y fait allusion dans le script Floor), mais après plusieurs essais

nous pouvons l’estimer à environ 60-80cm. Cette valeur est cohérente avec la hauteur maximale

moyenne qu’un être humain adulte puisse grimper en utilisant uniquement ses jambes.

Le script Wall propose d’appliquer à un modèle 3D un comportement de mur, c’est-à-dire de

bloquer l’avatar lorsqu’il rentre en collision avec celui-ci. Tout comme pour le script Floor,

pour que le composant fonctionne un collider doit également être appliqué. Pour être plus

précis, si la translation effectuée par l’avatar n’est pas perpendiculaire à la surface du collider

dans la zone de contact, le mouvement n’est pas forcément bloqué. Il est modifié en fonction

de la variable Friction, définie en tant que paramètre du composant, sur une plage de 0 à 10.

Lorsque la valeur est fixée à 0, l’avatar glisse le long de la paroi du mur selon la direction du

mouvement (si l’avatar avance sur un mur en se tournant sur sa droite, il va se déplacer le long

du mur vers sa droite), il n’y a donc pas de friction. Mais plus la valeur augmente, plus la

différence d’angle entre la normale du collider et du vecteur de translation de l’avatar devra

être élevée pour pouvoir glisser le long du mur, sinon le mouvement sera complètement bloqué.

Après plusieurs essais, nous avons estimé que la valeur par défaut (1) représente un bon

équilibre d’effet de friction. Enfin, nous précisons que le composant dispose du paramètre

Active permettant au développeur d’activer ou de désactiver l’effet de mur, sans avoir à

supprimer le composant. La figure 42 présente le composant dans l’inspector.

5.3/ Exploitation d’un menu interactif et description du mouvement dans le monde

virtuel

18

Figure 12. Définition du composant Wall dans l'inspector.

Nous pouvons donc utiliser ces scripts sur les différents modèles 3D. Toutefois, nous avons

constaté que dans plusieurs cas l’utilisation d’un seul script peut ne pas être suffisante. Prenons

l’exemple d’un mur avec chemin de ronde. Nous souhaitons à la fois que le mur bloque le

mouvement et aussi avoir la possibilité de marcher sur la partie supérieure comme le faisaient

les gardes à l’époque médiévale pour surveiller le château. Utiliser uniquement le script Floor

permet bien de pouvoir se déplacer sur le dessus du mur, mais sur la façade l’avatar n’est pas

bloqué, il traverse le mur. Cela est dû au fait que l’angle de pente de la façade (qui vaut environ

90°) est supérieur à l’angle maximal de pente (45°), cette partie ne peut pas être considérée

comme un sol et ne possède donc pas les propriétés associées. De même, si nous appliquons

uniquement le script Wall, la façade du mur va bloquer correctement le joueur, mais ce dernier

ne pourra pas marcher sur la partie supérieure, il va traverser la surface et tomber à l’intérieur

du mur. Cela s’explique par le fait que lorsque l’avatar se situe sur le dessus d’un objet 3D, il

n’est pas considéré comme étant en collision avec ce dernier. Par conséquent, la surface

supérieure de l’objet n’a pas le comportement d’un mur. Ces défauts nuisant à l’immersion dans

le monde virtuel, nous avons trouvé comme solution d’appliquer les 2 scripts sur le même

GameObject. Dans ce cas, les effets se complémentent, proposant un comportement à la fois

sur la partie supérieure et sur les parties latérales de l’objet. En utilisant les paramètres par

défaut, nous n’avons pas rencontré au cours de nos essais des conflits dans le comportement

des scripts (nous n’avons pas trouvé des situations où le mouvement est bloqué sur une surface

prévue pour se comporter comme un sol, ou de pouvoir marcher et grimper sur une surface

prévue pour se comporter comme un mur).

Nous avons décidé d’appliquer cette solution pour l’ensemble des objets 3D de la scène. En

effet, excepté certains objets 3D comme le MNT où le script Wall n’apporte pas de

comportement supplémentaire dans le moteur de jeu (puisque par définition le MNT représente

le sol), nous recommandons d’appliquer les 2 scripts sur tous les objets pour éviter tout

problème de collision ou de gravité lors de la navigation dans le monde virtuel, sans avoir

besoin au préalable d’analyser chaque objet 3D pour déterminer si nous souhaitons le considérer

comme un sol ou un mur.

d) Utilisation du Canvas UserVRInventory pour l’affichage des différentes
représentations du château

Nous avons décrit en partie 7.3.c une méthode pour proposer une navigation dans le monde

virtuel réaliste, qui prend en compte les autres objets 3D. Nous cherchons désormais à répondre

à la problématique de la visualisation des différents modèles du château. En effet, nous

disposons dans la scène de 3 groupes de GameObjects différents, chacun correspondant à l’une

des représentations du château (état actuel, état historique avec textures réalistes, état historique

avec échelle de couleurs définissant le niveau de certitude). Placés dans la même zone dans le

repère, il n’est pas possible de les afficher en même temps. L’objectif est donc de proposer au

joueur la possibilité d’alterner entre ces différentes représentations, sans avoir à modifier le

projet.

5.3/ Exploitation d’un menu interactif et description du mouvement dans le monde

virtuel

19

Dans les tutoriels vidéo à notre disposition, il est proposé d’intégrer une tablette DEC, qui est

un prefab représentant une tablette tactile qu’il est possible d’attraper dans la scène VR via les

manettes. Des outils sont intégrés à la tablette, comme un appareil photo ou une lampe torche.

Nous pourrions alors utiliser cette tablette pour y intégrer des outils personnalisés, notamment

pour choisir la représentation du château à effectuer. Toutefois, la tablette étant un objet virtuel

physique, il peut s’avérer encombrant à transporter lors de la visite virtuelle. C’est pour cela

que nous avons décidé d’utiliser à la place l’interface d’inventaire intégré par défaut dans le

template, correspondant au prefab UserVRInventory intégré dans le XRPlayer (voir figure 40).

En effet, en appuyant sur le bouton directionnel haut ou sur le bouton X, un menu apparaît au-

dessus du modèle 3D de la manette qui l’a activé, et suivant son mouvement. Compte-tenu de

l’interface, nous pouvons supposer que ce menu sert à faire apparaître des outils ou des

équipements d’ouvrier, dans le cadre de simulations de chantier ou d’assemblage de pièces

mécaniques. Le menu dispose de 2 onglets, l’un représentant les outils et l’autre les

équipements. 10 boutons sont disponibles pour chaque onglet, le joueur peut les activer en

appuyant sur la gâchette (ZL ou ZR) de l’autre manette en visant avec le faisceau laser. Par

défaut le menu est vide, aucun objet n’est présent. Par rapport à la tablette DEC, ce menu a pour

avantage de rester fixé à la manette sans être un objet 3D physique qui doit être transporté (le

menu peut être désaffiché en rappuyant sur le même bouton qui a permis de l’afficher). Nous

allons alors concevoir nos propres boutons qui afficheront la représentation choisie.

Le prefab UserVRInventory est en réalité un canvas (canevas) propre à Unity, qui permet de

représenter des interfaces utilisateurs, ou User Interface (UI). D’après la documentation de

Unity (Unity@2023), le canevas est un GameObject disposant du composant Canvas. La

figure 43 présente les différents éléments du prefab. Il serait fastidieux de tous les présenter,

nous allons uniquement nous intéresser au GameObject InventoryContent qui regroupe tout le

contenu associé à l’onglet d’inventaire. Nous pouvons y retrouver les éléments liés aux 10

boutons (UserVRInventorySlot01, UserVRInventorySlot02, etc.), regroupés par rangée (Row01

et Row02). Pour tous les UserVRInventorySlot, le composant Button est intégré (voir figure 43).

Il est possible de définir l’image représentée par le bouton (Target Graphic), ainsi que les

couleurs appliquées à l’image en fonction de la situation du bouton (1 couleur différente lorsque

le bouton est visé par le pointeur d’une manette, lorsqu’il est pressé, lorsqu’il est sélectionné).

Nous avons modifié les couleurs par défaut pour qu’elles soient plus distinguées entre elles.

Figure 13. Description du prefab UserVRInventory dans la hiérarchie / Description du composant Button dans l'inspector.

Ce qui est le plus intéressant dans ce composant est la fonction On Click, qui permet d’appliquer

des fonctions lorsque l’utilisateur appuie sur le bouton. C’est ainsi que nous allons pouvoir

afficher la représentation du château souhaitée, en utilisant la fonction GameObject.SetActive.

Cette dernière propose en paramètre d’activer ou de désactiver le GameObject en entrée dans

5.3/ Exploitation d’un menu interactif et description du mouvement dans le monde

virtuel

20

la scène. La solution que nous proposons utilise simultanément 3 fonctions SetActive pour un

même bouton. Lorsque l’utilisateur appuie sur le bouton, l’une des fonctions active le

GameObject parent contenant tous les objets 3D propres à la représentation souhaitée (en effet,

l’action d’activer/désactiver un GameObject s’applique aussi à tous les éléments enfants), les 2

autres fonctions désactivent les 2 autres représentations. Nous modifions alors ainsi les 3

premiers boutons de la 1re rangée, 1 pour chaque représentation. Pour chaque

UserVRInventorySlot, l’image peut être modifiée dans le GameObject enfant Picto, à travers le

composant Image (paramètre Source Image). Nous avons donc intégré dans les Assets des

pictogrammes en noir et blanc au format JPEG téléchargés sur le site Shutterstock

(Shutterstock@2023), représentant un château en ruines et un château en bon état (voir

figure 44), représentant respectivement l’état actuel et l’état historique (avec textures réalistes).

En ce qui concerne l’état historique avec représentation du niveau de certitude, nous avons

utilisé le même pictogramme mais en vert et blanc.

Figure 14. Pictogrammes utilisés dans le menu interactif dans la représentation VR.

Nous avons également souhaité ajouter du texte sous les boutons pour indiquer la représentation

affichée. Les UserVRInventorySlot disposent d’un GameObject enfant nommé Text, prévu à cet

effet. Nous avons alors rentré pour chaque bouton le texte approprié, mais dans la scène VR ces

textes ne s’affichent pas dans les menus. Notre hypothèse est qu’il est prévu dans le canevas

que ce texte s’affiche que s’il considère qu’un objet d’inventaire est présent à l’emplacement

du bouton. Si ce n’est pas le cas, le bouton est fonctionnel mais est considéré comme vide, les

éléments secondaires tels que le texte décrivant le nom de l’objet ne s’affichent pas. Ici, nous

avons donc modifié le comportement par défaut des boutons, mais n’avons pas rajouté d’objets

dans l’inventaire. Par manque de temps nous n’avons pas réussi à résoudre ce problème, mais

ce serait une perspective intéressante à développer à l’avenir.

5.4/ Implémentation d’outils pour l’amélioration de l’expérience VR

21

5.4/ Implémentation d’outils pour l’amélioration de
l’expérience VR

Dans les parties 7.2 et 7.3, nous avons proposé des solutions pour effectuer une représentation

4D du château dans le Cube VR. Dans cette section, nous allons nous intéresser à des outils

plus spécifiques visant à améliorer l’expérience du joueur sur l’aspect interactif, visuel et

instructif de l’exploration virtuelle.

a) Création de boîtes de dialogue interactives

Pour compléter cette visite VR du château, nous avons jugé intéressant d’apporter des textes

descriptifs, décrivant l’histoire du château dans les différentes parties comme lors d’une visite

d’un monument, ainsi que de proposer un tutoriel pour expliquer les différentes commandes et

interactions possibles. Nous pouvons pour cela intégrer dans la scène Unity le prefab UIDialog,

disponible dans les Assets par défaut dans le template (taper dans la barre de recherche

UIDialog). Ce prefab correspond à une boîte de dialogue flottante apparaissant dans la scène

lorsque le joueur s’en approche, défilant un texte. Cela s’effectue à travers le script Dialog

Controller (propre au SDK DEC) permettant de fournir tous les paramètres nécessaires. La

figure 45 présente le script dans l’inspector, où les paramètres sont divisés en 4 parties : Base

settings, Dialog Settings, UI Component settings et Position/Look at Settings. Des paramètres

tels que la vitesse de défilement du texte (Text Speed), la portée d’activation de la boîte de

dialogue (Activation Range, où l’élément apparait et disparait lorsque l’avatar entre ou sort de

la zone d’activation) ou la possibilité que la boîte de dialogue s’oriente en direction de l’avatar

(Look at User) sont présents.

Figure 15. Description du script Dialog Controller intégré dans l’UIDialog.

Le texte à afficher n’est pas contenu dans l’UIDialog. En effet, il faut créer un GameObject

vide contenant le composant DialogData. Ce dernier permet de créer plusieurs conversations,

chacun disposant d’un identifiant (ID). Pour chaque conversation il est possible de définir le

contenu textuel (Dialog Text), ainsi que des boutons (Footers Buttons). 4 types de boutons sont

disponibles avec leur propre logo (boutons valider, annuler, répéter et retour en arrière). Le

développeur peut décider lesquels seront utilisés pour la boîte de dialogue, ainsi que la fonction

exécutée lorsque l’utilisateur appuie sur le bouton (à travers la fonction On click que nous avons

déjà évoqué en partie 7.3.d). Dans notre projet, nous utilisons uniquement le bouton de type

valider (Validate), permettant lorsqu’il est pressé :

5.4/ Implémentation d’outils pour l’amélioration de l’expérience VR

22

- d’afficher la conversation suivante dans la boîte de dialogue, en utilisant la fonction

DialogController.DisplayConversation avec en entrée l’UIDialog et l’ID de la

conversation à afficher.

- de masquer la boîte de dialogue si la conversation actuelle est la dernière, en utilisant la

fonction DialogController.UI_HideUIDialog.

Afin d’associer l’UIDialog et le DialogData, il faut indiquer dans le paramètre Data du

composant Dialog Controller (voir figure 45) le GameObject disposant du composant

DialogData, ainsi que l’ID de la conversation de départ (paramètre Initial Conversation ID).

La figure 46 présente l’exemple de la paramétrisation du DialogData pour la boîte de dialogue

décrivant la cour intérieure du château, avec sa représentation dans la scène VR. Nous

retrouvons en-dessous de la boite flottante le bouton valider, qui a pour effet lorsqu’il est pressé

de masquer l’élément de la scène. Dans cet exemple, une seule conversation est utilisée, dans

la mesure où le texte est court. Mais dans d’autres cas, utiliser plusieurs conversations permet

de limiter la taille des boîtes de dialogues (qui s’adaptent selon la longueur du texte), pour éviter

que le contenu dépasse du champ de vision.

Figure 16. Description du script Dialog Data / Représentation de l'UIDialog dans la scène virtuelle.

b) Ajout de sons audios dans la scène

Il est possible sur Unity d’ajouter des sons audio (format MP3), considérés comme des

AudioClip dans l’interface du logiciel. La méthode la plus simple d’intégrer un son dans la

scène est de créer un GameObject disposant du composant Audio Source, permettant d’importer

en paramètres un AudioClip (voir figure 47). Afin que l’utilisateur puisse entendre des sons, il

faut un GameObject disposant du composant AudioListener. Dans notre cas, le prefab

CaveUser du XRPlayer dispose par défaut de ce composant, dans le GameObject Ears, simulant

le fait que l’avatar entende les sons depuis ses oreilles. La position des GameObject disposant

de ce composant peut être important dans la mesure où il est possible de modifier la zone dans

laquelle le son peut être entendu. Cela s’effectue à travers le paramètre Spatial Blend, sur une

plage de 0 à 1. A 0 le son est entendu quelle que soit la position de l’AudioListener, à 1 le son

ne peut être entendu que dans la zone d’écoute 3D.

5.4/ Implémentation d’outils pour l’amélioration de l’expérience VR

23

Figure 17. Description du composant Audio Source dans l'inspector.

Dans notre projet, nous avons uniquement ajouté une musique d’ambiance, rappelant l’ère

médiévale, pour améliorer l’immersion de la visite. Mais d’autres utilisations peuvent être

réfléchies en perspective. Par exemple, il faut savoir que dans les UIDialog (voir partie 5.4.a),

il est possible d’ajouter un AudioClip qui s’exécute lorsque le texte défile. Nous pourrions alors

penser à intégrer une voix qui récite le texte affiché dans les boîtes de dialogue, dans le principe

d’un audioguide. Ceci améliorerait la communication des informations historiques pour

l’utilisateur.

c) Perspectives d’outils à implémenter dans le projet

Pour conclure cette partie, nous allons présenter plusieurs outils décrits dans les tutoriels vidéo

à notre disposition qui n’ont pas été ajoutés dans le projet dans le temps imparti, mais que nous

avons estimé intéressants à évoquer en perspective d’amélioration :

- Occlusion culling : Unity a la possibilité d’appliquer cet effet (présenté en partie 1.1.c)

dans la scène (Window > Rendering > Occlusion culling). Une fenêtre apparaît,

permettant de régler certains paramètres. Pour calculer l’Occlusion culling (Bake), il

faut définir tous les objets 3D de la scène qui sont statiques (c’est-à-dire qui ne sont pas

amenés à se déplacer, au travers d’une animation par exemple). Cela aurait pour effet

d’améliorer les performances graphiques. Pour guise d’information, la représentation

dans le Cube VR oscille entre 20 et 40 FPS (Frame Per Second, soit le nombre d’images

par seconde). En comparant la représentation dans le Cube du modèle 3D du château à

l’état actuel de base avec celui réduit à travers l’utilisation de la Normal map (voir

partie 3.2.b), nous obtenons une amélioration d’environ 10 FPS. Ceci implique que les

pistes d’optimisation du rendu entraînent des conséquences non négligeables sur les

performances dans la représentation VR.

- Sprite : ce type de GameObject permet d’ajouter une image 2D dans la scène 3D. Nous

aurions pu l’utiliser pour afficher le tableau 7 présentant l’échelle de couleurs utilisée

pour représenter le niveau de certitude de l’état historique, permettant au joueur

d’accéder à ces informations directement dans la scène virtuelle.

- Skybox : ceci correspond à un matériau qui s’applique sur le fond de la scène virtuelle,

tel un décor qui s’étend à l’horizon. Nous avons conservé la Skybox par défaut, qui

donne une sensation de vide autour du château. Il serait possible d’utiliser une

photographie 360° prise sur le site pour renforcer l’immersion.

- DoTweenPath : ce script propose de définir des points de passage dans la scène, formant

un chemin sur lesquels les GameObjects disposant du composant peuvent se déplacer.

Nous pouvons alors suggérer un mode de visite alternatif où la caméra virtuelle se

déplace automatiquement autour du château dans la scène, dans le même principe

qu’une vidéo de visite virtuelle (voir partie 1.3.a).

5.4/ Implémentation d’outils pour l’amélioration de l’expérience VR

24

- Rotating Door : pour renforcer l’immersion dans la visite VR, il est possible de définir

des interactions avec les objets 3D. Par exemple, le script Rotating door propose

d’appliquer une rotation sur un modèle 3D, simulant l’ouverture d’une porte lorsque le

joueur interagit avec l’objet.

Conclusion

Pour conclure, nous avons pu constater au travers d’une synthèse bibliographique la diversité

des méthodes et réflexions pouvant s’appliquer sur un type de projet tel que la restitution 4D

archéologique. Plusieurs enjeux et problématiques sont à prendre en compte dans la démarche

globale selon le temps imparti, le cahier des charges à respecter, ou tout simplement la volonté

de l’acteur du projet.

Nous avons réussi à suivre la chaîne de traitement de la figure 2 en respectant les différentes

étapes, en commençant par les acquisitions lasergrammétriques et photogrammétriques

relevées sur le terrain. Les traitements effectués sur les différents logiciels adaptés permettent

d’obtenir un nuage de points dense, complet, et géoréférencé.

Ce nuage a été par la suite utilisé pour la modélisation 3D du MNT et de l’état actuel du site,

comprenant le château en ruines ainsi que le rocher du Wachtfels. Pour cette étape, nous avons

cherché à trouver les méthodes et logiciels les plus adaptés pour classifier les points au sol et

modéliser au mieux, selon des critères de précision, de qualité visuelle ou encore selon le niveau

de connaissance de l’utilisateur. Ceci est important pour permettre aux prochains acteurs du

projet INTERREG VI d’optimiser leur temps pour manipuler le large panel d’outils, d’appareils

et de méthodes pouvant être employés pour une restitution 4D. Nous avons conclu que le

logiciel Metashape propose de nombreux avantages, notamment la possibilité d’utiliser des

acquisitions photogrammétriques pour effectuer une cartographie UV sur le modèle 3D, tout en

ouvrant des pistes d’optimisation du rendu au travers de la méthode de réduction du nombre de

polygones en utilisant la normal map.

Nous avons également pu nous essayer aux rôles d’historien et d’infographiste au travers de la

modélisation 4D sur le logiciel Blender. Nous avons alors réuni 3 représentations du modèle du

château : l’état actuel, l’état historique avec des textures réalistes, et avec une échelle de

couleurs représentant le niveau de certitude avec lequel a été restitué chaque élément.

Nous avons tout de même pu explorer une nouvelle technologie pour communiquer et mettre

en valeur le modèle 4D, qui est le Cube VR. Nous avons pu exploiter plusieurs scripts du SDK

ainsi que des outils propres au moteur de jeu Unity pour proposer une visite interactive et

didactique du château de Wasenbourg à travers les âges.

Plusieurs perspectives sont à prendre en considération vis-à-vis de ce projet si nous disposions

de plus de temps. Nous pouvons penser par exemple à améliorer le texturage en utilisant

d’autres cartes UV présentées dans l’état de l’art, ou encore proposer d’autres méthodes de

communication et de mise en valeur du modèle (réalité augmentée, visite virtuelle interactive

sur un site internet). Nous pouvons également évoquer la modélisation paramétrique de certains

éléments complexes tels que les fenêtres et portes, intégrés dans une bibliothèque d’objets. Ceci

permettrait de gagner du temps sur la modélisation d’éléments complexes.

5.4/ Implémentation d’outils pour l’amélioration de l’expérience VR

25

Liste des tableaux

Tableau 1. Résultats de fermeture du projet. .. Erreur ! Signet non défini.
Tableau 2. Récapitulatif des écarts entre les coordonnées x,y,z calculées et théoriques. Erreur !
Signet non défini.
Tableau 3. Récapitulatif des erreurs moyennes quadratiques sur les points d’appui (cibles au sol)
du projet. ... Erreur ! Signet non défini.
Tableau 4. Comparaison des nuages de points via l'algorithme M3C2 (référence : nuage de points
scanner) ... Erreur ! Signet non défini.
Tableau 5. Comparaison des nuages de points via l'algorithme M3C2 (référence : 3D Reshaper).
 .. Erreur ! Signet non défini.
Tableau 6. Comparaison des méthodes de création de MNT. Erreur ! Signet non défini.
Tableau 7. Description de l'échelle de couleurs représentant le niveau de ceritude de l'état
historique du château... Erreur ! Signet non défini.

Table des illustrations

Figure 1. Rocher du Wachtfels avec les vestiges du temple romain. ... 2

Figure 2. Photographie aérienne du château de Wasenbourg (état actuel) / Essai de restitution du
château de Wasenbourg à l’époque médiévale par Mengus (2004). ... 3

Figure 3. Chaîne de traitement théorique inspirée de Dell'Unto et al. (2013). Erreur ! Signet non
défini.
Figure 4. Modèle hybride de la chapelle Saint-Laurent, par Bruna (2014). .. Erreur ! Signet non défini.
Figure 5. Exemple de texturage d'un cube, selon Hassan (2016). Erreur ! Signet non défini.
Figure 6. Exemple du processus d’UV mapping sur une pyramide, selon Verhoeven (2017). .. Erreur !
Signet non défini.
Figure 7. Comparaison d'algorithmes d'unwrapping sur la carrosserie d'une voiture par Liu et al.
(2008). ... Erreur ! Signet non défini.
Figure 8. Ensemble de cartes UV d'une façade par Sanseverino et al. (2022): (a) Diffuse map; (b)
Height map; (c) Normal map; (d) Roughness map; (e) Ambiant Occlusion map. Erreur ! Signet non
défini.
Figure 9. Application de la chaîne de traitement de Webster (2017) sur un cube décoré. Erreur !
Signet non défini.
Figure 10. Mise en évidence des 3 méthodes d'optimisation du rendu graphique, par Cohen-Or et
al. (2001). ... Erreur ! Signet non défini.
Figure 11. Hiérarchie de l'imperfection des données archéologiques d'après Runz (2008). Erreur !
Signet non défini.
Figure 12. Représentation de l'incertitude dans la reconstruction du castellum d'Horbourg-Wihr par
Nivola (2018) .. Erreur ! Signet non défini.
Figure 13. Planification des chemins de caméra pour la vidéo de visite virtuelle du château de
Lichtenberg par Rocha (2022). .. 4

Figure 14. Manipulation du scanner laser FARO Focus 3D X330 et des cibles sphériques, avec la
répartition des stations sur le site (obtenue via le logiciel FARO Scene)...... Erreur ! Signet non défini.

5.4/ Implémentation d’outils pour l’amélioration de l’expérience VR

26

Figure 15. Relevé d'une cible sphérique au tachéomètre sur le site. Erreur ! Signet non défini.
Figure 16. Exemple de photographie aérienne verticale prise sur le site / Cible codée au sol. Erreur !
Signet non défini.
Figure 17. Répartition des stations et sphères relevées sur le site (obtenu via Covadis). Erreur !
Signet non défini.
Figure 18. Récapitulatif des erreurs de distance des cibles (d'après l’outil ScanManager de FARO
Scene). ... Erreur ! Signet non défini.
Figure 19. Récapitulatif des erreurs (d'après l'outil Quality Manager de FARO Scene). . Erreur ! Signet
non défini.
Figure 20. Exemple d'une cible au sol reconnue (à gauche) et non reconnue (à droite) par la
détection automatique. .. Erreur ! Signet non défini.
Figure 21. (a) Visualisation du nuage de points créé sur Metashape. (b) Représentation des ellipses
d’erreurs. ... Erreur ! Signet non défini.
Figure 22. Illustration de l'algorithme M3C2 d'après DiFrancesco et al. (2020). (a) Détermination de
la normale locale N à partir du plan circulaire de rayon D et de centre Pcore. (b) 1er exemple de la
détermination de la distance M3C2 avec un cylindre de hauteur La et de rayon da faible. (c) 2eme
exemple de la détermination de la distance M3C2 avec un cylindre de hauteur Lb et de rayon db
élevé. ... Erreur ! Signet non défini.
Figure 23. Illustration de la comparaison nuage-maillage d'après Lague et al. (2013), avec calcul de
la distance LC2M (Length Cloud-to-Mesh). .. Erreur ! Signet non défini.
Figure 24. Maillage du château obtenu sur 3D Reshaper, avec des exemples d'éléments mal maillés
comparés à l’original. ... Erreur ! Signet non défini.
Figure 25. Maillage du château obtenu sur CloudCompare, avec des exemples d'éléments mal
maillés comparés à l’original. .. Erreur ! Signet non défini.
Figure 26. Maillage du château obtenu sur Metashape, avec des exemples d'éléments
correctement maillés comparés à l’original. .. Erreur ! Signet non défini.
Figure 27. Modèles 3D du château et du rocher de Wachtfels avec la Diffuse map. Erreur ! Signet
non défini.
Figure 28. Comparaison des modèles réduit (à gauche) et de base (à droite) des châteaux. ... Erreur !
Signet non défini.
Figure 29. Présentation de l'interface Layout de Blender. Erreur ! Signet non défini.
Figure 30. Translation verticale appliquée sur un vertice (à gauche), un edge (au milieu) et une face
(à droite) du cube. .. Erreur ! Signet non défini.
Figure 31. Modélisation par primitives géométriques des rambardes. Erreur ! Signet non défini.
Figure 32. Maquette blanche du château de Wasenbourg à l'état historique. Erreur ! Signet non
défini.
Figure 33. Représentation du niveau de certitude en couleurs unies de l'état historique du château.
 .. Erreur ! Signet non défini.
Figure 34. Description des composants du Cube VR (DEC@2023) / Exemple d'application du Cube
VR (VirtualConcept@2023). .. 7

Figure 35. Autre exemple d'application du Cube VR (VirtualConcept@2023) / Description des
composants des Joycon (JeuxActu@2017). .. 7

Figure 36. Présentation de l'interface par défaut d'Unity. .. 9

Figure 37. Exemple de création d’un cube sur Unity. / Fenêtre inspector du cube créé. 10

Figure 38. Captures présentant les étapes pour importer le modèle 4D de Blender vers Unity. 13

Figure 39. Contenu du dossier après avoir construit le programme (application à exécuter en
surbrillance). .. 14

Figure 40. Détail des prefab par défaut dans le template (à gauche) avec le modèle 3D de l'avatar
dans la scène (à droite). .. 15

Figure 41. Définition des composants Floor et Floor (custom slope) dans l'inspector. 17

Figure 42. Définition du composant Wall dans l'inspector. ... 18

5.4/ Implémentation d’outils pour l’amélioration de l’expérience VR

27

Figure 43. Description du prefab UserVRInventory dans la hiérarchie / Description du composant
Button dans l'inspector. .. 19

Figure 44. Pictogrammes utilisés dans le menu interactif dans la représentation VR. 20

Figure 45. Description du script Dialog Controller intégré dans l’UIDialog..................................... 21

Figure 46. Description du script Dialog Data / Représentation de l'UIDialog dans la scène virtuelle.
 .. 22

Figure 47. Description du composant Audio Source dans l'inspector. ... 23

Bibliographie

a23d@2023 (2023). Different maps in PBR Textures. URL :

https://www.a23d.co/blog/different-maps-in-pbr-textures/

Agisoft@2023 (2023). Texture map types. URL :

https://agisoft.freshdesk.com/support/solutions/articles/31000154587-texture-map-types

Angles, B. (2019). Modélisation géométrique par primitives. Thèse de doctorat

Autodesk@2023 (2018). Familles Revit : présentation détaillée | Autodesk University. URL :

https://www.autodesk.com/autodesk-university/fr/article/Revit-Families-Step-Step-

Introduction-2018

Barratt, R.P. (2016). Interpreting and Presenting Archaeological Sites Using 3D

Reconstruction: Virtual Exploration of the Xaghra Brochtorff Circle in Gozo. Disponible sur :

https://www.academia.edu/35713061/Interpreting_and_Presenting_Archaeological_Sites_Usi

ng_3D_Reconstruction_Virtual_Exploration_of_the_Xaghra_Brochtorff_Circle_in_Gozo

Consulté le : 20 avril 2023

BeauxArts@2023 (2023). Tour du monde des visites virtuelles les plus bluffantes. URL :

https://www.beauxarts.com/vu/tour-du-monde-virtuel-des-musees-comme-si-vous-y-etiez/

Benazzi, T. (2018). Restitution 4D du Château du Kagenfels par combinaison de l’existant et

d’hypothèses archéologiques pour une visite virtuelle du site. Mémoire de Projet de Fin

d’Etudes. INSA DE STRASBOURG. Disponible sur : http://eprints2.insa-strasbourg.fr/3513/

Bern, M. et Eppstein, D. (2000). QUADRILATERAL MESHING BY CIRCLE PACKING,

International Journal of Computational Geometry & Applications, 1004, p. 347-360.

Disponible sur : https://doi.org/10.1142/S0218195900000206

Blender@2023 (2023). UV Tools — Blender Manual. URL :

https://docs.blender.org/manual/fr/dev/modeling/meshes/editing/uv.html

Bruna, R. (2014). Modélisation 3D de la chapelle Saint-Laurent et de la place du Château

(secteur 3) pour extraction de données archéologiques et visite virtuelle. masters. INSA de

Strasbourg. Disponible sur : http://eprints2.insa-strasbourg.fr/1777/ Consulté le : 10 février

2023

Cartier, L. (2019). Modélisation 3D du château disparu des Wurtemberg à Horbourg-Wihr et

https://www.a23d.co/blog/different-maps-in-pbr-textures/
https://docs.blender.org/manual/fr/dev/modeling/meshes/editing/uv.html

5.4/ Implémentation d’outils pour l’amélioration de l’expérience VR

28

exploitation de la réalité augmentée pour une mise en valeur dans la trame urbaine

contemporaine. Mémoire de Projet de Fin d’Etudes. INSA DE STRASBOURG. Disponible

sur : http://eprints2.insa-strasbourg.fr/3829/

Cohen-Or, D., Chrysanthou, Y. et Silva, C. (2001). A Survey of Visibility for Walkthrough

Applications, Proceedings of SIGGRAPH [Preprint]

Coorg, S. et Teller, S. (1997). Real-time occlusion culling for models with large occluders, in

Proceedings of the 1997 symposium on Interactive 3D graphics - SI3D ’97. the 1997

symposium, Providence, Rhode Island, United States: ACM Press, p. 83-ff. Disponible sur :

https://doi.org/10.1145/253284.253312

Czarnowsky, C. (1937). Die Wasenbourg bei Niederbronn-les-bains, in D’Elsässer Kalender

Hüsfrind, p. 117‑122.

DEC@2023 (2023). Salle immersive 3D - DEC. URL : https://www.dec-industrie.com/Salle-

immersive-3D

Dell’Unto, N., Ferdani, D., Leander Touati, A.-M., Dellepiane, M. et Callieri, M. (2013).

Digital reconstruction and visualization in archaeology Case-study drawn from the work of

the Swedish Pompeii Project, in, p. 621‑628. Disponible sur :

https://doi.org/10.1109/DigitalHeritage.2013.6743804

Desjardin, E., Nocent, O. et Runz, C. de (2012). Prise en compte de l’imperfection des

connaissances depuis la saisie des données jusqu’à la restitution 3D, Archeologia e

Calcolatori, Sup. 3, p. 385.

DiFrancesco, P.-M., Bonneau, D. et Hutchinson, D.J. (2020). The Implications of M3C2

Projection Diameter on 3D Semi-Automated Rockfall Extraction from Sequential Terrestrial

Laser Scanning Point Clouds, Remote Sensing, 1211, p. 1885. Disponible sur :

https://doi.org/10.3390/rs12111885

Dufaÿ, B. (2014). La modélisation 3D de grands ensembles monumentaux de la restitution au

public à la recherche scientifique, p. 149‑163.

Encyclopédie de l’Alsace (1986). Editions Publitotal (Encyclopédie de l’Alsace, vol. 12).

Disponible sur : https://books.google.fr/books?id=i1MvAAAAMAAJ

Favre-Brun, A. (2013). Architecture virtuelle et représentation de l’incertitude: analyse des

solutions de visualisation de la représentation 3D. Colloque Virtual Retrospect 2013

Hassan, M. (2016). Proposed workflow for UV mapping and texture painting. Disponible sur :

https://urn.kb.se/resolve?urn=urn:nbn:se:bth-12799 Consulté le : 2 août 2023

Kazhdan, M., Chuang, M., Rusinkiewicz, S. et Hoppe, H. (2020). Poisson Surface

Reconstruction with Envelope Constraints, Computer Graphics Forum, 395, p. 173‑182.

Disponible sur : https://doi.org/10.1111/cgf.14077

JetBrains@2023 (2023). dotPeek : Décompilateur .NET et navigateur assembleur gratuit par

JetBrains. URL : https://www.jetbrains.com/fr-fr/decompiler/

https://doi.org/10.1145/253284.253312
https://www.dec-industrie.com/Salle-immersive-3D
https://www.dec-industrie.com/Salle-immersive-3D
https://urn.kb.se/resolve?urn=urn:nbn:se:bth-12799
https://doi.org/10.1111/cgf.14077
https://www.jetbrains.com/fr-fr/decompiler/

5.4/ Implémentation d’outils pour l’amélioration de l’expérience VR

29

JeuxActu@2023 (2017). URL : https://www.jeuxactu.com/nintendo-switch-la-manette-joy-

con-en-detail-107553.htm

Lague, D., Brodu, N. et Leroux, J. (2013). Accurate 3D comparison of complex topography

with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z), ISPRS Journal of

Photogrammetry and Remote Sensing, 82, p. 10‑26. Disponible sur :

https://doi.org/10.1016/j.isprsjprs.2013.04.009

Landes, T., Grussenmeyer, P. et Boulaassal, H. (2011). Les principes fondamentaux de la

lasergrammétrie terrestre: acquisition, traitement des données et applications, XYZ, 129, p.

25-38.

Landes, T., Heissler, M., Koehl, M., Benazzi, T. et Nivola, T. (2019). Uncertainty

Visualization Approaches for 3d Models of Castles Restituted from Archeological

Knowledge, ISPRS - International Archives of the Photogrammetry, Remote Sensing and

Spatial Information Sciences, 42W9, p. 409‑416. Disponible sur :

https://doi.org/10.5194/isprs-archives-XLII-2-W9-409-2019

Levy, B., Petitjean, S., Ray, N. et Maillot, J. (2002). Least Squares Conformal Maps for

Automatic Texture Atlas Generation, ACM Trans. Graph., 21, p. 362-371. Disponible sur :

https://doi.org/10.1145/566654.566590

Liu, L., Gotsman, C., Zhang, L., Xu, Y. et Gortler, S. (2008). A Local/Global Approach to

Mesh Parameterization, Computer Graphics Forum, 27. Disponible sur :

https://doi.org/10.1111/j.1467-8659.2008.01290.x

Luximon, A. et Luximon, Y. (2012). Shoe-Last Design and Development, in, p. 193-212.

Disponible sur : https://doi.org/10.1201/b13021-13

Matthis, C. (1902). Communications du Club Vosgien, 36. Disponible sur :

https://gallica.bnf.fr/ark:/12148/bpt6k9625641c/f1.item

Matthis, C. (1906). Die Wasenburg: Eine elsässische Ritterburg im 14. Jahrhundert und ein

römischer Merkurtempel. Heitz. Disponible sur :

https://books.google.fr/books?id=tVy8mgEACAAJ

Mengus, N. et Rudrauf, J.-M. (2013). Châteaux forts et fortifications médiévales d’Alsace. La

Nuée Bleue Strasbourg

Nivola, T. (2018). Modélisation 3D du castellum de Horbourg-Wihr et exploitation de la

réalité augmentée pour une mise en valeur dans la trame urbaine contemporaine. Mémoire

de Projet de Fin d’Etudes. INSA DE STRASBOURG. Disponible sur : http://eprints2.insa-

strasbourg.fr/3441/

Richalet-Chaudeur, T. (2022). Relevé et modélisation 3D des galeries des contremines de la

citadelle de Doullens (Somme). Mémoire de Projet de Fin d’Etudes. INSA DE

STRASBOURG. Disponible sur : http://eprints2.insa-strasbourg.fr/4859/

Rocha, M. (2022). Levé et numérisation du château de Lichtenberg en vue d’une proposition

de visite virtuelle du site à des périodes remarquables. Mémoire de Projet de Fin d’Etudes.

https://www.jeuxactu.com/nintendo-switch-la-manette-joy-con-en-detail-107553.htm
https://www.jeuxactu.com/nintendo-switch-la-manette-joy-con-en-detail-107553.htm
https://doi.org/10.5194/isprs-archives-XLII-2-W9-409-2019
https://doi.org/10.1145/566654.566590
https://doi.org/10.1111/j.1467-8659.2008.01290.x
https://doi.org/10.1201/b13021-13

5.4/ Implémentation d’outils pour l’amélioration de l’expérience VR

30

INSA DE STRASBOURG. Disponible sur : http://eprints2.insa-strasbourg.fr/4882/

Rocheleau, M. (2011). La modélisation 3D comme méthode de recherche en sciences

historiques

Rodríguez-Gonzálvez, P., Muñoz-Nieto, A.L., del Pozo, S., Sanchez-Aparicio, L.J.,

Gonzalez-Aguilera, D., Micoli, L., Gonizzi Barsanti, S., Guidi, G., Mills, J., Fieber, K.,

Haynes, I. et Hejmanowska, B. (2017). 4D RECONSTRUCTION AND VISUALIZATION

OF CULTURAL HERITAGE:ANALYZING OUR LEGACY THROUGH TIME, The

International Archives of the Photogrammetry, Remote Sensing and Spatial Information

Sciences, XLII-2/W3, p. 609‑616. Disponible sur : https://doi.org/10.5194/isprs-archives-

XLII-2-W3-609-2017

Runz, C. de (2008). Imperfection, temps et espace : modélisation, analyse et visualisation

dans un SIG archéologique. phdthesis. Université de Reims - Champagne Ardenne.

Disponible sur : https://theses.hal.science/tel-00560668 Consulté le : 20 avril 2023

Salesse, J. (2018). Wasenbourg si tu m’étais contée... Les amis de Wasenbourg

Sabaliauskas, M. et Marcinkevičius, V. (2015). An Investigation of ABF++, LSCM, and

ARAP Methods for Parametrization of Shoetrees, Mokslas - Lietuvos ateitis, 7, p. 295-299.

Disponible sur : https://doi.org/10.3846/mla.2015.786

Sanseverino, A., Limongiello, M. et Fiorillo, F. (2022). UAV photogrammetric survey and

Image-Based elaborations for an Industrial Plant - DISEGNARECON, 15, p. 15.1-15.10.

Disponible sur : https://doi.org/10.20365/disegnarecon.29.2022.15

Sheffer, A., Levy, B., Mogilnitsky, M. et Bogomyakov, A. (2005). ABF++ : Fast and Robust

Angle Based Flattening, ACM Trans. Graph., 24, p. 311-330. Disponible sur :

https://doi.org/10.1145/1061347.1061354

Sheffer, A. et de Sturler, E. (2001). Parameterization of Faceted Surfaces for Meshing using

Angle-Based Flattening, Engineering with Computers, 17, p. 326-337. Disponible sur :

https://doi.org/10.1007/PL00013391

Shutterstock@2023 (2023). Castle Ruins Stock Vector (Royalty Free). URL :

https://www.shutterstock.com/image-vector/castle-ruins-148332056

Sorkine, O. et Alexa, M. (2007). As-rigid-as-possible surface modeling, in Proceedings of the

fifth Eurographics symposium on Geometry processing. Goslar, DEU: Eurographics

Association (SGP ’07), p. 109-116.

Sorkine, O. et Cohen-Or, D. (2001). Warped Textures for UV Mapping Encoding

Unity@2023 (2023). Unity - Manual: Albedo Color and Transparency. URL :

https://docs.unity3d.com/Manual/StandardShaderMaterialParameterAlbedoColor.html

Spiria@2023 (2016). Comprendre le “UV-mapping” et les textures. URL :

https://www.spiria.com/fr/blogue/applications-desktop/comprendre-le-uv-mapping-et-les-

textures/

https://doi.org/10.3846/mla.2015.786
https://doi.org/10.20365/disegnarecon.29.2022.15
https://doi.org/10.1145/1061347.1061354
https://doi.org/10.1007/PL00013391
https://www.shutterstock.com/image-vector/castle-ruins-148332056
https://docs.unity3d.com/Manual/StandardShaderMaterialParameterAlbedoColor.html
https://www.spiria.com/fr/blogue/applications-desktop/comprendre-le-uv-mapping-et-les-textures/
https://www.spiria.com/fr/blogue/applications-desktop/comprendre-le-uv-mapping-et-les-textures/

5.4/ Implémentation d’outils pour l’amélioration de l’expérience VR

31

Verhoeven, G.J. (2017). COMPUTER GRAPHICS MEETS IMAGE FUSION: THE POWER

OF TEXTURE BAKING TO SIMULTANEOUSLY VISUALISE 3D SURFACE

FEATURES AND COLOUR, ISPRS Annals of the Photogrammetry, Remote Sensing and

Spatial Information Sciences, IV-2-W2, p. 295-302. Disponible sur :

https://doi.org/10.5194/isprs-annals-IV-2-W2-295-2017

VirtuelConcept@2023 (2023). VirtualConcept - Accueil. URL : https://virtuelconcept32.com/

Wang, Y., Bu, J., Li, N., Song, M. et Tan, P. (2012). Detecting discontinuities for surface

reconstruction, in Proceedings of the 21st International Conference on Pattern Recognition

(ICPR2012). Proceedings of the 21st International Conference on Pattern Recognition

(ICPR2012), p. 2108-2111.

Wang, Z., Luo, Z., Zhang, J. et Saucan, E. (2016). ARAP++: an extension of the local/global

approach to mesh parameterization, Frontiers of Information Technology & Electronic

Engineering, 176, p. 501-515. Disponible sur : https://doi.org/10.1631/FITEE.1500184

Weatherill, N.P. (1992). Delaunay triangulation in computational fluid dynamics, Computers

& Mathematics with Applications, 245, p. 129-150. Disponible sur :

https://doi.org/10.1016/0898-1221(92)90045-J

Webster, N. (2017). High poly to low poly workflows for real-time rendering, Journal of

Visual Communication in Medicine, 40, p. 40-47. Disponible sur :

https://doi.org/10.1080/17453054.2017.1313682

Yuksel, C., Lefebvre, S. et Tarini, M. (2019). Rethinking Texture Mapping, Computer

Graphics Forum, 382, p. 535-551. Disponible sur : https://doi.org/10.1111/cgf.13656

Zhang, H. et Hoff, K.E. (1997). Fast backface culling using normal masks, in Proceedings of

the 1997 symposium on Interactive 3D graphics - SI3D ’97. the 1997 symposium,

Providence, Rhode Island, United States: ACM Press, p. 103-ff. Disponible sur :

https://doi.org/10.1145/253284.253314

Zhang, W., Qi, J., Peng, W., Wang, H., Xie, D., Wang, X. et Yan, G. (2016). An Easy-to-Use

Airborne LiDAR Data Filtering Method Based on Cloth Simulation, Remote Sensing, 8, p.

501. Disponible sur : https://doi.org/10.3390/rs8060501

Zhang, J., Yao, Y. et Deng, B. (2021). Fast and Robust Iterative Closest Point, IEEE

Transactions on Pattern Analysis and Machine Intelligence, p. 1‑1. Disponible sur :

https://doi.org/10.1109/TPAMI.2021.3054619

https://doi.org/10.5194/isprs-annals-IV-2-W2-295-2017
https://virtuelconcept32.com/
https://doi.org/10.1631/FITEE.1500184
https://doi.org/10.1016/0898-1221(92)90045-J
https://doi.org/10.1080/17453054.2017.1313682
https://doi.org/10.1111/cgf.13656
https://doi.org/10.1145/253284.253314
https://doi.org/10.3390/rs8060501

5.4/ Implémentation d’outils pour l’amélioration de l’expérience VR

32

